TY - JOUR
T1 - PROBABILISTIC MASS-RADIUS RELATIONSHIP for SUB-NEPTUNE-SIZED PLANETS
AU - Wolfgang, Angie
AU - Rogers, Leslie A.
AU - Ford, Eric B.
N1 - Publisher Copyright:
© 2016. The American Astronomical Society. All rights reserved.
PY - 2016/7/1
Y1 - 2016/7/1
N2 - The Kepler Mission has discovered thousands of planets with radii <4 , paving the way for the first statistical studies of the dynamics, formation, and evolution of these sub-Neptunes and super-Earths. Planetary masses are an important physical property for these studies, and yet the vast majority of Kepler planet candidates do not have theirs measured. A key concern is therefore how to map the measured radii to mass estimates in this Earth-to-Neptune size range where there are no Solar System analogs. Previous works have derived deterministic, one-to-one relationships between radius and mass. However, if these planets span a range of compositions as expected, then an intrinsic scatter about this relationship must exist in the population. Here we present the first probabilistic mass-radius relationship (M-R relation) evaluated within a Bayesian framework, which both quantifies this intrinsic dispersion and the uncertainties on the M-R relation parameters. We analyze how the results depend on the radius range of the sample, and on how the masses were measured. Assuming that the M-R relation can be described as a power law with a dispersion that is constant and normally distributed, we find that , a scatter in mass of , and a mass constraint to physically plausible densities, is the "best-fit" probabilistic M-R relation for the sample of RV-measured transiting sub-Neptunes (R pl < 4 ). More broadly, this work provides a framework for further analyses of the M-R relation and its probable dependencies on period and stellar properties.
AB - The Kepler Mission has discovered thousands of planets with radii <4 , paving the way for the first statistical studies of the dynamics, formation, and evolution of these sub-Neptunes and super-Earths. Planetary masses are an important physical property for these studies, and yet the vast majority of Kepler planet candidates do not have theirs measured. A key concern is therefore how to map the measured radii to mass estimates in this Earth-to-Neptune size range where there are no Solar System analogs. Previous works have derived deterministic, one-to-one relationships between radius and mass. However, if these planets span a range of compositions as expected, then an intrinsic scatter about this relationship must exist in the population. Here we present the first probabilistic mass-radius relationship (M-R relation) evaluated within a Bayesian framework, which both quantifies this intrinsic dispersion and the uncertainties on the M-R relation parameters. We analyze how the results depend on the radius range of the sample, and on how the masses were measured. Assuming that the M-R relation can be described as a power law with a dispersion that is constant and normally distributed, we find that , a scatter in mass of , and a mass constraint to physically plausible densities, is the "best-fit" probabilistic M-R relation for the sample of RV-measured transiting sub-Neptunes (R pl < 4 ). More broadly, this work provides a framework for further analyses of the M-R relation and its probable dependencies on period and stellar properties.
UR - http://www.scopus.com/inward/record.url?scp=84978280174&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84978280174&partnerID=8YFLogxK
U2 - 10.3847/0004-637X/825/1/19
DO - 10.3847/0004-637X/825/1/19
M3 - Article
AN - SCOPUS:84978280174
SN - 0004-637X
VL - 825
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 19
ER -