TY - JOUR
T1 - Probing nonnucleoside inhibitor-induced active-site distortion in HIV-1 reverse transcriptase by transient kinetic analyses
AU - Xia, Qing
AU - Radzio, Jessica
AU - Anderson, Karen S.
AU - Sluis-Cremer, Nicolas
PY - 2007/8
Y1 - 2007/8
N2 - Nonnucleoside reverse transcriptase inhibitors (NNRTI) are a group of structurally diverse compounds that bind to a single site in HIV-1 reverse transcriptase (RT), termed the NNRTI-binding pocket (NNRTI-BP). NNRTI binding to RT induces conformational changes in the enzyme that affect key elements of the polymerase active site and also the association between the two protein subunits. To determine which conformational changes contribute to the mechanism of inhibition of HIV-1 reverse transcription, we used transient kinetic analyses to probe the catalytic events that occur directly at the enzyme's polymerase active site when the NNRTI-BP was occupied by nevirapine, efavirenz, or delavirdine. Our results demonstrate that all NNRTI-RT-template/primer (NNRTI-RT-T/P) complexes displayed a metal-dependent increase in dNTP binding affinity (Kd) and a metal-independent decrease in the maximum rate of dNTP incorporation (kpol). The magnitude of the decrease in k pol was dependent on the NNRTI used in the assay: Efavirenz caused the largest decrease followed by delavirdine and then nevirapine. Analyses that were designed to probe direct effects on phosphodiester bond formation suggested that the NNRTI mediate their effects on the chemistry step of the DNA polymerization reaction via an indirect manner. Because each of the NNRTI analyzed in this study exerted largely similar phenotypic effects on single nucleotide addition reactions, whereas each of them are known to exert differential effects on RT dimerization, we conclude that the NNRTI effects on subunit association do not directly contribute to the kinetic mechanism of inhibition of DNA polymerization. Published by Cold Spring Harbor Laboratory Press.
AB - Nonnucleoside reverse transcriptase inhibitors (NNRTI) are a group of structurally diverse compounds that bind to a single site in HIV-1 reverse transcriptase (RT), termed the NNRTI-binding pocket (NNRTI-BP). NNRTI binding to RT induces conformational changes in the enzyme that affect key elements of the polymerase active site and also the association between the two protein subunits. To determine which conformational changes contribute to the mechanism of inhibition of HIV-1 reverse transcription, we used transient kinetic analyses to probe the catalytic events that occur directly at the enzyme's polymerase active site when the NNRTI-BP was occupied by nevirapine, efavirenz, or delavirdine. Our results demonstrate that all NNRTI-RT-template/primer (NNRTI-RT-T/P) complexes displayed a metal-dependent increase in dNTP binding affinity (Kd) and a metal-independent decrease in the maximum rate of dNTP incorporation (kpol). The magnitude of the decrease in k pol was dependent on the NNRTI used in the assay: Efavirenz caused the largest decrease followed by delavirdine and then nevirapine. Analyses that were designed to probe direct effects on phosphodiester bond formation suggested that the NNRTI mediate their effects on the chemistry step of the DNA polymerization reaction via an indirect manner. Because each of the NNRTI analyzed in this study exerted largely similar phenotypic effects on single nucleotide addition reactions, whereas each of them are known to exert differential effects on RT dimerization, we conclude that the NNRTI effects on subunit association do not directly contribute to the kinetic mechanism of inhibition of DNA polymerization. Published by Cold Spring Harbor Laboratory Press.
UR - http://www.scopus.com/inward/record.url?scp=34547578940&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547578940&partnerID=8YFLogxK
U2 - 10.1110/ps.072829007
DO - 10.1110/ps.072829007
M3 - Article
C2 - 17656585
AN - SCOPUS:34547578940
SN - 0961-8368
VL - 16
SP - 1728
EP - 1737
JO - Protein Science
JF - Protein Science
IS - 8
ER -