Abstract
This study explores sintering and piezoelectricity of ZnO-doped perovskite Pb(In1/2Nb1/2)O3-Pb(Zn1/3Nb2/3)O3-PbTiO3 (PIN-PZN-PT) ceramics. The enhanced densification of ZnO-doped PIN-PZN-PT is attributed to the formation of oxygen vacancies by the incorporation of Zn2+ into the perovskite B-site and increased rate of bulk diffusion relative to undoped PIN-PZN-PT. Incorporation of Zn2+ into the perovskite lattice increased the tetragonal character of PIN-PZN-PT as demonstrated by tetragonal peak splitting and increased Curie temperature. Sintering in flowing oxygen reduced the solubility of Zn2+ in the perovskite lattice and resulted in rhombohedral PIN-PZN-PT. Sintering in oxygen prevented secondary phase formation which resulted in a high-piezoelectric coefficient (d33 – 550 pC/N), high-coercive field (Ec – 13 kV/cm), and high-rhombohedral to tetragonal phase transition temperature (Tr-t – 165°C). We conclude that ZnO-doped PIN-PZN-PT ceramics are excellent candidates for high-power transducer applications.
Original language | English (US) |
---|---|
Pages (from-to) | 4794-4802 |
Number of pages | 9 |
Journal | Journal of the American Ceramic Society |
Volume | 103 |
Issue number | 9 |
DOIs | |
State | Published - Sep 1 2020 |
All Science Journal Classification (ASJC) codes
- Ceramics and Composites
- Materials Chemistry