Abstract
The trends of increasing waste and comparatively low growth of waste treatment methodologies have created the need for better utilization of the products we deem unfit for use. The options available for utilizing end-of-life (EOL) products are currently restricted to reusing, recycling, remanufacturing, and permanent disposal. In this work, the authors propose a new EOL option called resynthesis that utilizes existing waste from EOL products in a novel way through the synthesis of assemblies/subassemblies across multiple domains (i.e., consumer electronics, health care, automotive, etc.). The resynthesis of assemblies/subassemblies is achieved by quantifying their similarities (form and function) across multiple domains. A mixed-integer linear model is developed to determine the optimal EOL strategy for each component/subassembly. As a means of verifying the EOL decision, the value of the "new" resynthesized product is compared with the value that would be derived if the individual subassemblies were reused, remanufactured, recycled, or disposed. A case study involving an electronic mouse is used to validate the proposed methodology and to demonstrate its practicality as an alternate enterprise level EOL option.
Original language | English (US) |
---|---|
Article number | 011004 |
Journal | Journal of Mechanical Design |
Volume | 136 |
Issue number | 1 |
DOIs | |
State | Published - 2014 |
All Science Journal Classification (ASJC) codes
- Mechanics of Materials
- Mechanical Engineering
- Computer Science Applications
- Computer Graphics and Computer-Aided Design