Progressive loss of DNA methylation releases epigenetic gene silencing from a tandemly repeated maize Myb gene

Rajandeep S. Sekhon, Surinder Chopra

Research output: Contribution to journalArticlepeer-review

47 Scopus citations


Maize pericarp color1 (p1) gene, which regulates phlobaphene biosynthesis in kernel pericarp and cob glumes, offers an excellent genetic system to study tissue-specific gene regulation. A multicopy p1 allele, P1-wr (white pericarp/red cob) is epigenetically regulated. Hypomethylation of P1-wr in the presence of Unstable factor for orange1 (Ufo1), leads to ectopic pigmentation of pericarp and other organs. The Ufo1-induced phenotypes show incomplete penetrance and poor expressivity: gain of pigmentation is observed only in a subset of plants carrying Ufo1 mutation, and the extent of pigmentation is highly variable. We show that Ufo1 induces progressive hypomethylation of P1-wr repeats over generations. After five generations of exposure to Ufo1, a 30-40% decrease in CG and CNG methylation was observed in an upstream enhancer and an intron region of P1-wr. Interestingly, such hypomethylation correlated with an increase in penetrance of the Ufo1-induced pigmentation phenotype from ∼27 to 61%. Expressivity of the Ufo1-induced phenotype also improved markedly as indicated by increased uniformity of pericarp pigmentation in the later generations. Furthermore, the poor expressivity of the Uo1 is associated with mosaic methylation patterns of the P1-wr upstream enhancer in individual cells and distinct P1-wr gene copies. Finally, comparison of methylation among different tissues indicated that Ufo1 induces rapid CG and CNG hypomethylation of P1-wr repeats during plant development. Together, these data indicate that the poor penetrance and expressivity of Ufo1-induced phenotypes is caused by mosaicism of methylation, and progressive mitotic hypomethylation leads to improved meiotic heritability of the mutant phenotype. In duplicated genomes like maize, loss of an epigenetic regulator may produce mosaic patterns due to redundancy of epigenetic regulators and their target sequences. We show here that multiple developmental cycles may be required for complete disruption of suppressed epigenetic states and appearance of heritable phenotypes.

Original languageEnglish (US)
Pages (from-to)81-91
Number of pages11
Issue number1
StatePublished - Jan 2009

All Science Journal Classification (ASJC) codes

  • Genetics


Dive into the research topics of 'Progressive loss of DNA methylation releases epigenetic gene silencing from a tandemly repeated maize Myb gene'. Together they form a unique fingerprint.

Cite this