ProHys PUF: A Proteresis - Hysteresis switch based Physical Unclonable Function

Salma Khan, Syed Azeemuddin, Mohammed Arifuddin Sohel

Research output: Contribution to journalArticlepeer-review

Abstract

With the Integrated Circuits becoming pervasive in all key industries and applications, PUF's has gained immense popularity for securing the IC's by providing unique identification code to each chip. Designing a highly efficient PUF with optimal values of uniqueness and reliability is a significant challenge. Uniqueness depends on process variations during chip fabrication, and reliability depends on the chip's ability to resist changes to supply voltage and temperature variations. Multiple PUF designs that employ reliability enhancement circuits and security algorithms achieve these design characteristics. Nonetheless, these techniques are design overheads. This paper presents a novel Physical Unclonable Function (PUF) based on the ProHys switch. It deals with hysteresis and proteresis mode of operation, which are complementary to each other. The Prohys PUF befittingly satisfies both uniqueness and reliability criteria, without any additional circuitry or security algorithms. It is the first attempt to design a PUF based on the ProHys switch to the best of our knowledge. The proposed ProHys PUF is designed in TSMC 180 nm CMOS technology, generating an inter-chip variation of 49.85% with 99.7% uniqueness. The minimum reliability of the circuit is 96.9% for a temperature range of -40 °C to 100 °C at a supply voltage range of 1.7V–1.9V.

Original languageEnglish (US)
Pages (from-to)207-216
Number of pages10
JournalIntegration
Volume89
DOIs
StatePublished - Mar 2023

All Science Journal Classification (ASJC) codes

  • Software
  • Hardware and Architecture
  • Electrical and Electronic Engineering

Cite this