Abstract
LUX-ZEPLIN is a dark matter detector expected to obtain world-leading sensitivity to weakly-interacting massive particles interacting via nuclear recoils with a ∼7-tonne xenon target mass. This paper presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment, and 2) an effective neutrino millicharge, both for pp-chain solar neutrinos, 3) an axion flux generated by the Sun, 4) axionlike particles forming the Galactic dark matter, 5) hidden photons, 6) mirror dark matter, and 7) leptophilic dark matter. World-leading sensitivities are expected in each case, a result of the large 5.6 t 1000 d exposure and low expected rate of electron-recoil backgrounds in the <100 keV energy regime. A consistent signal generation, background model and profile-likelihood analysis framework is used throughout.
Original language | English (US) |
---|---|
Article number | 092009 |
Journal | Physical Review D |
Volume | 104 |
Issue number | 9 |
DOIs | |
State | Published - Nov 1 2021 |
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Projected sensitivities of the LUX-ZEPLIN experiment to new physics via low-energy electron recoils'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Physical Review D, Vol. 104, No. 9, 092009, 01.11.2021.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Projected sensitivities of the LUX-ZEPLIN experiment to new physics via low-energy electron recoils
AU - Akerib, D. S.
AU - Al Musalhi, A. K.
AU - Alsum, S. K.
AU - Amarasinghe, C. S.
AU - Ames, A.
AU - Anderson, T. J.
AU - Angelides, N.
AU - Araújo, H. M.
AU - Armstrong, J. E.
AU - Arthurs, M.
AU - Bai, X.
AU - Balajthy, J.
AU - Balashov, S.
AU - Bang, J.
AU - Bargemann, J. W.
AU - Bauer, D.
AU - Baxter, A.
AU - Beltrame, P.
AU - Bernard, E. P.
AU - Bernstein, A.
AU - Bhatti, A.
AU - Biekert, A.
AU - Biesiadzinski, T. P.
AU - Birch, H. J.
AU - Blockinger, G. M.
AU - Bodnia, E.
AU - Boxer, B.
AU - Brew, C. A.J.
AU - Brás, P.
AU - Burdin, S.
AU - Busenitz, J. K.
AU - Buuck, M.
AU - Cabrita, R.
AU - Carmona-Benitez, M. C.
AU - Cascella, M.
AU - Chan, C.
AU - Chott, N. I.
AU - Cole, A.
AU - Converse, M. V.
AU - Cottle, A.
AU - Cox, G.
AU - Creaner, O.
AU - Cutter, J. E.
AU - Dahl, C. E.
AU - De Viveiros, L.
AU - Dobson, J. E.Y.
AU - Druszkiewicz, E.
AU - Eriksen, S. R.
AU - Fan, A.
AU - Fayer, S.
AU - Fearon, N. M.
AU - Fiorucci, S.
AU - Flaecher, H.
AU - Fraser, E. D.
AU - Fruth, T.
AU - Gaitskell, R. J.
AU - Genovesi, J.
AU - Ghag, C.
AU - Gibson, E.
AU - Gokhale, S.
AU - Van Der Grinten, M. G.D.
AU - Gwilliam, C. B.
AU - Hall, C. R.
AU - Hardy, C. A.
AU - Haselschwardt, S. J.
AU - Hertel, S. A.
AU - Horn, M.
AU - Huang, D. Q.
AU - Ignarra, C. M.
AU - Jahangir, O.
AU - James, R. S.
AU - Ji, W.
AU - Johnson, J.
AU - Kaboth, A. C.
AU - Kamaha, A. C.
AU - Kamdin, K.
AU - Kazkaz, K.
AU - Khaitan, D.
AU - Khazov, A.
AU - Khurana, I.
AU - Kodroff, D.
AU - Korley, L.
AU - Korolkova, E. V.
AU - Kraus, H.
AU - Kravitz, S.
AU - Kreczko, L.
AU - Krikler, B.
AU - Kudryavtsev, V. A.
AU - Leason, E. A.
AU - Lee, J.
AU - Leonard, D. S.
AU - Lesko, K. T.
AU - Levy, C.
AU - Li, J.
AU - Liao, J.
AU - Lindote, A.
AU - Linehan, R.
AU - Lippincott, W. H.
AU - Liu, X.
AU - Lopes, M. I.
AU - Lopez Asamar, E.
AU - López Paredes, B.
AU - Lorenzon, W.
AU - Luitz, S.
AU - Majewski, P. A.
AU - Manalaysay, A.
AU - Manenti, L.
AU - Mannino, R. L.
AU - Marangou, N.
AU - McCarthy, M. E.
AU - McKinsey, D. N.
AU - McLaughlin, J.
AU - Miller, E. H.
AU - Mizrachi, E.
AU - Monte, A.
AU - Monzani, M. E.
AU - Morad, J. A.
AU - Morales Mendoza, J. D.
AU - Morrison, E.
AU - Mount, B. J.
AU - Murphy, A. St J.
AU - Naim, D.
AU - Naylor, A.
AU - Nedlik, C.
AU - Nelson, H. N.
AU - Neves, F.
AU - Nikoleyczik, J. A.
AU - Nilima, A.
AU - Nguyen, A.
AU - Olcina, I.
AU - Oliver-Mallory, K. C.
AU - Pal, S.
AU - Palladino, K. J.
AU - Palmer, J.
AU - Patton, S.
AU - Parveen, N.
AU - Pease, E. K.
AU - Penning, B.
AU - Pereira, G.
AU - Piepke, A.
AU - Qie, Y.
AU - Reichenbacher, J.
AU - Rhyne, C. A.
AU - Richards, A.
AU - Riffard, Q.
AU - Rischbieter, G. R.C.
AU - Rosero, R.
AU - Rossiter, P.
AU - Santone, D.
AU - Sazzad, A. B.M.R.
AU - Schnee, R. W.
AU - Scovell, P. R.
AU - Shaw, S.
AU - Shutt, T. A.
AU - Silk, J. J.
AU - Silva, C.
AU - Smith, R.
AU - Solmaz, M.
AU - Solovov, V. N.
AU - Sorensen, P.
AU - Soria, J.
AU - Stancu, I.
AU - Stevens, A.
AU - Stifter, K.
AU - Suerfu, B.
AU - Sumner, T. J.
AU - Swanson, N.
AU - Szydagis, M.
AU - Taylor, W. C.
AU - Taylor, R.
AU - Temples, D. J.
AU - Terman, P. A.
AU - Tiedt, D. R.
AU - Timalsina, M.
AU - To, W. H.
AU - Tovey, D. R.
AU - Tripathi, M.
AU - Tronstad, D. R.
AU - Turner, W.
AU - Utku, U.
AU - Vaitkus, A.
AU - Wang, B.
AU - Wang, J. J.
AU - Wang, W.
AU - Watson, J. R.
AU - Webb, R. C.
AU - White, R. G.
AU - Whitis, T. J.
AU - Williams, M.
AU - Wolfs, F. L.H.
AU - Woodward, D.
AU - Wright, C. J.
AU - Xiang, X.
AU - Xu, J.
AU - Yeh, M.
AU - Zarzhitsky, P.
N1 - Funding Information: The research supporting this work took place in whole or in part at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. Funding for this work is supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Contracts No. DE-AC02-05CH11231, No. DE-SC0020216, no. DE-SC0012704, No. DE-SC0010010, No. DE-AC02-07CH11359, No. DE-SC0012161, No. DE-SC0014223, No. DE-SC0010813, No. DE-SC0009999, No. DE-NA0003180, No. DE-SC0011702, No. DESC0010072, No. DE-SC0015708, No. DE-SC0006605, No. DE-SC0008475, No. DE-FG02-10ER46709, No. UW PRJ82AJ, No. DE-SC0013542, No. DE-AC02-76SF00515, No. DE-SC0018982, No. DE-SC0019066, No. DE-SC0015535, No. DE-SC0019193 No. DE-AC52-07NA27344, and No. DOE-SC0012447. This research was also supported by U.S. National Science Foundation (NSF); the United Kingdom Science and Technology Facilities Council under Grants No. ST/M003655/1, No. ST/M003981/1, No. ST/M003744/1, No. ST/M003639/1, No. ST/M003604/1, No. ST/R003181/1, No. ST/M003469/1, No. ST/S000739/1, No. ST/S000666/1, No. ST/S000828/1, No. ST/S000879/1, No. ST/S000933/1, No. ST/S000747/1, No. ST/S000801/1 and No. ST/R003181/1 (JD); Portuguese Foundation for Science and Technology (FCT) under Grant No. PTDC/FIS-PAR/28567/2017; the Institute for Basic Science, Korea (Budget No. IBS-R016-D1). We acknowledge additional support from the STFC Boulby Underground Laboratory in the United Kingdom the GridPP and IRIS Consortium, in particular at Imperial College London and additional support by the University College London Cosmoparticle Initiative. This research used resources of the National Energy Research Scientific Computing Center, a D. O. E. Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was completed in part with resources provided by the University of Massachusetts’ Green High Performance Computing Cluster. The University of Edinburgh is a charitable body, registered in Scotland, with the Registration No. SC005336. The assistance of SURF and its personnel in providing physical access and general logistical and technical support is acknowledged. We thank Jiunn-Wei Chen and his group for handing off numerical results from their RRPA calculations, and we thank Patrick Draper for useful discussions. Publisher Copyright: © 2021 authors. Published by the American Physical Society.
PY - 2021/11/1
Y1 - 2021/11/1
N2 - LUX-ZEPLIN is a dark matter detector expected to obtain world-leading sensitivity to weakly-interacting massive particles interacting via nuclear recoils with a ∼7-tonne xenon target mass. This paper presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment, and 2) an effective neutrino millicharge, both for pp-chain solar neutrinos, 3) an axion flux generated by the Sun, 4) axionlike particles forming the Galactic dark matter, 5) hidden photons, 6) mirror dark matter, and 7) leptophilic dark matter. World-leading sensitivities are expected in each case, a result of the large 5.6 t 1000 d exposure and low expected rate of electron-recoil backgrounds in the <100 keV energy regime. A consistent signal generation, background model and profile-likelihood analysis framework is used throughout.
AB - LUX-ZEPLIN is a dark matter detector expected to obtain world-leading sensitivity to weakly-interacting massive particles interacting via nuclear recoils with a ∼7-tonne xenon target mass. This paper presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment, and 2) an effective neutrino millicharge, both for pp-chain solar neutrinos, 3) an axion flux generated by the Sun, 4) axionlike particles forming the Galactic dark matter, 5) hidden photons, 6) mirror dark matter, and 7) leptophilic dark matter. World-leading sensitivities are expected in each case, a result of the large 5.6 t 1000 d exposure and low expected rate of electron-recoil backgrounds in the <100 keV energy regime. A consistent signal generation, background model and profile-likelihood analysis framework is used throughout.
UR - http://www.scopus.com/inward/record.url?scp=85120426201&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85120426201&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.104.092009
DO - 10.1103/PhysRevD.104.092009
M3 - Article
AN - SCOPUS:85120426201
SN - 2470-0010
VL - 104
JO - Physical Review D
JF - Physical Review D
IS - 9
M1 - 092009
ER -