Abstract
The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double β decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to Xe136 neutrinoless double β decay, taking advantage of the significant (>600 kg) Xe136 mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of Xe136 is projected to be 1.06×1026 years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with Xe136 at 1.06×1027 years.
Original language | English (US) |
---|---|
Article number | 014602 |
Journal | Physical Review C |
Volume | 102 |
Issue number | 1 |
DOIs | |
State | Published - Jul 2020 |
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Projected sensitivity of the LUX-ZEPLIN experiment to the 0νββ decay of Xe 136'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Physical Review C, Vol. 102, No. 1, 014602, 07.2020.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Projected sensitivity of the LUX-ZEPLIN experiment to the 0νββ decay of Xe 136
AU - Akerib, D. S.
AU - Akerlof, C. W.
AU - Alqahtani, A.
AU - Alsum, S. K.
AU - Anderson, T. J.
AU - Angelides, N.
AU - Araújo, H. M.
AU - Armstrong, J. E.
AU - Arthurs, M.
AU - Bai, X.
AU - Balajthy, J.
AU - Balashov, S.
AU - Bang, J.
AU - Baxter, A.
AU - Bensinger, J.
AU - Bernard, E. P.
AU - Bernstein, A.
AU - Bhatti, A.
AU - Biekert, A.
AU - Biesiadzinski, T. P.
AU - Birch, H. J.
AU - Boast, K. E.
AU - Boxer, B.
AU - Brás, P.
AU - Buckley, J. H.
AU - Bugaev, V. V.
AU - Burdin, S.
AU - Busenitz, J. K.
AU - Cabrita, R.
AU - Carels, C.
AU - Carlsmith, D. L.
AU - Carmona-Benitez, M. C.
AU - Cascella, M.
AU - Chan, C.
AU - Chott, N. I.
AU - Cole, A.
AU - Cottle, A.
AU - Cutter, J. E.
AU - Dahl, C. E.
AU - De Viveiros, L.
AU - Dobson, J. E.Y.
AU - Druszkiewicz, E.
AU - Edberg, T. K.
AU - Eriksen, S. R.
AU - Fan, A.
AU - Fiorucci, S.
AU - Flaecher, H.
AU - Fraser, E. D.
AU - Fruth, T.
AU - Gaitskell, R. J.
AU - Genovesi, J.
AU - Ghag, C.
AU - Gibson, E.
AU - Gilchriese, M. G.D.
AU - Gokhale, S.
AU - Van Der Grinten, M. G.D.
AU - Hall, C. R.
AU - Harrison, A.
AU - Haselschwardt, S. J.
AU - Hertel, S. A.
AU - Hor, J. Y.K.
AU - Horn, M.
AU - Huang, D. Q.
AU - Ignarra, C. M.
AU - Jahangir, O.
AU - Ji, W.
AU - Johnson, J.
AU - Kaboth, A. C.
AU - Kamaha, A. C.
AU - Kamdin, K.
AU - Kazkaz, K.
AU - Khaitan, D.
AU - Khazov, A.
AU - Khurana, I.
AU - Kocher, C. D.
AU - Korley, L.
AU - Korolkova, E. V.
AU - Kras, J.
AU - Kraus, H.
AU - Kravitz, S.
AU - Kreczko, L.
AU - Krikler, B.
AU - Kudryavtsev, V. A.
AU - Leason, E. A.
AU - Lee, J.
AU - Leonard, D. S.
AU - Lesko, K. T.
AU - Levy, C.
AU - Li, J.
AU - Liao, J.
AU - Liao, F. T.
AU - Lin, J.
AU - Lindote, A.
AU - Linehan, R.
AU - Lippincott, W. H.
AU - Liu, R.
AU - Liu, X.
AU - Loniewski, C.
AU - Lopes, M. I.
AU - López Paredes, B.
AU - Lorenzon, W.
AU - Luitz, S.
AU - Lyle, J. M.
AU - Majewski, P. A.
AU - Manalaysay, A.
AU - Manenti, L.
AU - Mannino, R. L.
AU - Marangou, N.
AU - Marzioni, M. F.
AU - McKinsey, D. N.
AU - McLaughlin, J.
AU - Meng, Y.
AU - Miller, E. H.
AU - Mizrachi, E.
AU - Monte, A.
AU - Monzani, M. E.
AU - Morad, J. A.
AU - Morrison, E.
AU - Mount, B. J.
AU - Murphy, A. St J.
AU - Naim, D.
AU - Naylor, A.
AU - Nedlik, C.
AU - Nehrkorn, C.
AU - Nelson, H. N.
AU - Neves, F.
AU - Nikoleyczik, J. A.
AU - Nilima, A.
AU - O'Sullivan, K.
AU - Olcina, I.
AU - Oliver-Mallory, K. C.
AU - Pal, S.
AU - Palladino, K. J.
AU - Palmer, J.
AU - Parveen, N.
AU - Pease, E. K.
AU - Penning, B.
AU - Pereira, G.
AU - Pushkin, K.
AU - Reichenbacher, J.
AU - Rhyne, C. A.
AU - Riffard, Q.
AU - Rischbieter, G. R.C.
AU - Rosero, R.
AU - Rossiter, P.
AU - Rutherford, G.
AU - Santone, D.
AU - Sazzad, A. B.M.R.
AU - Schnee, R. W.
AU - Schubnell, M.
AU - Seymour, D.
AU - Shaw, S.
AU - Shutt, T. A.
AU - Silk, J. J.
AU - Silva, C.
AU - Smith, R.
AU - Solmaz, M.
AU - Solovov, V. N.
AU - Sorensen, P.
AU - Stancu, I.
AU - Stevens, A.
AU - Stifter, K.
AU - Sumner, T. J.
AU - Swanson, N.
AU - Szydagis, M.
AU - Tan, M.
AU - Taylor, W. C.
AU - Taylor, R.
AU - Temples, D. J.
AU - Terman, P. A.
AU - Tiedt, D. R.
AU - Timalsina, M.
AU - Tomás, A.
AU - Tripathi, M.
AU - Tronstad, D. R.
AU - Turner, W.
AU - Tvrznikova, L.
AU - Utku, U.
AU - Vacheret, A.
AU - Vaitkus, A.
AU - Wang, J. J.
AU - Wang, W.
AU - Watson, J. R.
AU - Webb, R. C.
AU - White, R. G.
AU - Whitis, T. J.
AU - Wolfs, F. L.H.
AU - Woodward, D.
AU - Xiang, X.
AU - Xu, J.
AU - Yeh, M.
AU - Zarzhitsky, P.
N1 - Funding Information: The research supporting this work took place in whole or in part at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. Funding for this work is supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Contract Nos. DE-AC02-05CH11231, DE-SC0020216, DE-SC0012704, DE-SC0010010, DE-AC02-07CH11359, DE-SC0012161, DE-SC0014223, DE-FG02-13ER42020, DE-SC0009999, DE-NA0003180, DE-SC0011702, DESC0010072, DE-SC0015708, DE-SC0006605, DE-FG02-10ER46709, UW PRJ82AJ, DE-SC0013542, DE-AC02-76SF00515, DE-SC0019066, DE-AC52-07NA27344, and DOE-SC0012447. This research was also supported by U.S. National Science Foundation (NSF); the U.K. Science and Technology Facilities Council under Award Nos., ST/M003655/1, ST/M003981/1, ST/M003744/1, ST/M003639/1, ST/M003604/1, and ST/M003469/1; Portuguese Foundation for Science and Technology (FCT) under Award Nos. PTDC/FIS-PAR/28567/2017; the Institute for Basic Science, Korea (budget nos. IBS-R016-D1); University College London and Lawrence Berkeley National Laboratory thank the U.K. Royal Society for travel funds under the International Exchange Scheme (IE141517). We acknowledge additional support from the Boulby Underground Laboratory in the U.K., the GridPP Collaboration , in particular at Imperial College London, and additional support by the University College London (UCL) Cosmoparticle Initiative. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The University of Edinburgh is a charitable body, registered in Scotland, with registration no. SC005336. The assistance of SURF and its personnel in providing physical access and general logistical and technical support is acknowledged. Publisher Copyright: © 2020 American Physical Society.
PY - 2020/7
Y1 - 2020/7
N2 - The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double β decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to Xe136 neutrinoless double β decay, taking advantage of the significant (>600 kg) Xe136 mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of Xe136 is projected to be 1.06×1026 years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with Xe136 at 1.06×1027 years.
AB - The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double β decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to Xe136 neutrinoless double β decay, taking advantage of the significant (>600 kg) Xe136 mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of Xe136 is projected to be 1.06×1026 years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with Xe136 at 1.06×1027 years.
UR - http://www.scopus.com/inward/record.url?scp=85089263751&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089263751&partnerID=8YFLogxK
U2 - 10.1103/PhysRevC.102.014602
DO - 10.1103/PhysRevC.102.014602
M3 - Article
AN - SCOPUS:85089263751
SN - 2469-9985
VL - 102
JO - Physical Review C
JF - Physical Review C
IS - 1
M1 - 014602
ER -