Propagation of Rayleigh waves on curved surfaces

Shuzeng Zhang, Liang Qin, Xiongbing Li, Christopher M. Kube

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

The propagation and properties of Rayleigh waves on curved surfaces are investigated theoretically. The Rayleigh wave dispersion equation for propagation on a curved surface is derived as a parabolic equation, and its penetration depth is analyzed using the curved surface boundary. Reciprocity is introduced to model the diffracted Rayleigh wave beams. Simulations of Rayleigh waves on some canonical curved surfaces are carried out, and the results are used to quantify the influence of curvature. It is found that the velocity of the surface wave increases with greater concave surface curvature, and a Rayleigh wave no longer exists once the surface wave velocity exceeds the bulk shear wave velocity. Moreover, the predicted wave penetration depth indicates that the energy in the Rayleigh wave is transferred to other modes and cannot propagate on convex surfaces with large curvature. A strong directional dependence is observed for the propagation of Rayleigh waves in different directions on surfaces with complex curvatures. Thus, it is important to include dispersion effects when considering Rayleigh wave propagation on curved surfaces.

Original languageEnglish (US)
Article number102517
JournalWave Motion
Volume94
DOIs
StatePublished - Mar 2020

All Science Journal Classification (ASJC) codes

  • Modeling and Simulation
  • General Physics and Astronomy
  • Computational Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Propagation of Rayleigh waves on curved surfaces'. Together they form a unique fingerprint.

Cite this