Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for oxidizing nitrobenzene to 3-nitrocatechol, 4-nitrocatechol, and nitrohydroquinone

Gönül Vardar, Kang Ryu, Thomas K. Wood

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Toluene-o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1 was found to oxidize nitrobenzene (NB) to form m-nitrophenol (m-NP, 72%) and p-NP (28%) with an initial rate of 0.098 and 0.031 nmol/(min mg protein), respectively. It was also discovered that wild-type ToMO forms 4-nitrocatechol (4-NC) from m-NP and p-NP with an initial rate of 0.15 and 0.0082 nmol/(min mg protein), respectively, and 3-NC (12%) and nitrohydroquinone (NHQ, 88%) from o-NP with an initial rate of 0.11 and 0.8 nmol/(min mg protein), respectively. To increase the oxidation rate and alter the oxidation regiospecificity of nitro aromatics as well as to study the role of the active site residues I100, Q141, T201, and F205 of the alpha hydroxylase fragment of ToMO (TouA), DNA shuffling and saturation mutagenesis were used to generate random mutants. The mutants were initially identified by screening via a rapid agar plate assay and then were further examined by high-performance liquid chromatography (HPLC) and gas chromatography (GC). Several mutants with higher rates of activities and with different regiospecificities were identified; for example, Escherichia coli TG1 cells expressing either TouA mutant M180T/E284G or E214G/D312N/M399V produce 4-NC 4.5- and 20-fold faster than wild-type ToMO (0.037 and 0.16 nmol/min mg protein from p-NP, respectively). TouA mutant A107T/E214A had the regiospecificity of NB changed significantly from 28% to 79% p-NP. From 200 μM NB, TouA variants A101T/M114T, A110T/E392D, M180T/E284G, and E214G/D312N/M399V produce 4-NC whereas wild-type ToMO does not. From m-NP, TouA mutant I100Q produces 4-NC (37%) and NHQ (63%), whereas wild-type ToMO produces only 4-NC (100%). Variant A107T/E214A acts like a para enzyme and forms p-cresol as the major product (93%) from toluene with enhanced activity (2.3-fold), whereas wild-type ToMO forms 32%, 21%, and 47% of o-, m-, and p-cresol, respectively. Hence, the non-specific ToMO was converted into a regiospecific enzyme, which rivals toluene 4-monooxygenase of P. mendocina KR1 and toluene o-monooxygenase of Burkholderia cepacia G4 in its specificity.

Original languageEnglish (US)
Pages (from-to)145-156
Number of pages12
JournalJournal of Biotechnology
Volume115
Issue number2
DOIs
StatePublished - Jan 26 2005

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology

Fingerprint

Dive into the research topics of 'Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for oxidizing nitrobenzene to 3-nitrocatechol, 4-nitrocatechol, and nitrohydroquinone'. Together they form a unique fingerprint.

Cite this