TY - JOUR
T1 - Protein Structure Is Related to RNA Structural Reactivity in Vivo
AU - Tang, Yin
AU - Assmann, Sarah M.
AU - Bevilacqua, Philip C.
N1 - Publisher Copyright:
© 2015 Elsevier Ltd. All rights reserved.
PY - 2016/2/27
Y1 - 2016/2/27
N2 - We assessed whether in vivo mRNA structural reactivity and the structure of the encoded protein are related. This is the first investigation of such a relationship that utilizes information on RNA structure obtained in living cells. Based on our recent genome-wide Structure-seq analysis in Arabidopsis thaliana, we report that, as a meta property, regions of individual mRNAs that code for protein domains generally have higher reactivity to DMS (dimethyl sulfate), a chemical that covalently modifies accessible As and Cs, than regions that encode protein domain junctions. This relationship is prominent for proteins annotated for catalytic activity and reversed in proteins annotated for binding and transcription regulatory activity. Upon analyzing intrinsically disordered proteins, we found a similar pattern for disordered regions as compared to ordered regions: regions of individual mRNAs that code for ordered regions have significantly higher DMS reactivity than regions that code for intrinsically disordered regions. Based on these effects, we hypothesize that the decreased DMS reactivity of RNA regions that encode protein domain junctions or intrinsically disordered regions may reflect increased RNA structure that may slow translation, allowing time for the nascent protein domain or ordered region of the protein to fold, thereby reducing protein misfolding. In addition, a drop in DMS reactivity was observed on portions of mRNA sequences that correspond to the C-termini of protein domains, suggesting ribosome protection at these mRNA regions. Structural relationships between mRNAs and their encoded proteins may have evolved to allow efficient and accurate protein folding.
AB - We assessed whether in vivo mRNA structural reactivity and the structure of the encoded protein are related. This is the first investigation of such a relationship that utilizes information on RNA structure obtained in living cells. Based on our recent genome-wide Structure-seq analysis in Arabidopsis thaliana, we report that, as a meta property, regions of individual mRNAs that code for protein domains generally have higher reactivity to DMS (dimethyl sulfate), a chemical that covalently modifies accessible As and Cs, than regions that encode protein domain junctions. This relationship is prominent for proteins annotated for catalytic activity and reversed in proteins annotated for binding and transcription regulatory activity. Upon analyzing intrinsically disordered proteins, we found a similar pattern for disordered regions as compared to ordered regions: regions of individual mRNAs that code for ordered regions have significantly higher DMS reactivity than regions that code for intrinsically disordered regions. Based on these effects, we hypothesize that the decreased DMS reactivity of RNA regions that encode protein domain junctions or intrinsically disordered regions may reflect increased RNA structure that may slow translation, allowing time for the nascent protein domain or ordered region of the protein to fold, thereby reducing protein misfolding. In addition, a drop in DMS reactivity was observed on portions of mRNA sequences that correspond to the C-termini of protein domains, suggesting ribosome protection at these mRNA regions. Structural relationships between mRNAs and their encoded proteins may have evolved to allow efficient and accurate protein folding.
UR - http://www.scopus.com/inward/record.url?scp=84951079990&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84951079990&partnerID=8YFLogxK
U2 - 10.1016/j.jmb.2015.11.012
DO - 10.1016/j.jmb.2015.11.012
M3 - Article
C2 - 26598238
AN - SCOPUS:84951079990
SN - 0022-2836
VL - 428
SP - 758
EP - 766
JO - Journal of Molecular Biology
JF - Journal of Molecular Biology
IS - 5
ER -