TY - JOUR
T1 - Psoralidin, an herbal molecule, inhibits phosphatidylinositol 3-kinase-mediated Akt signaling in androgen-independent prostate cancer cells
AU - Kumar, Raj
AU - Srinivasan, Sowmyalakshmi
AU - Koduru, Srinivas
AU - Pahari, Pallab
AU - Rohr, Jürgen
AU - Kyprianou, Natasha
AU - Damodaran, Chendil
PY - 2009/3
Y1 - 2009/3
N2 - The protein kinase Akt plays an important role in cell proliferation and survival in many cancers, including prostate cancer. Due to its kinase activity, it serves as a molecular conduit for inhibiting apoptosis and promoting angiogenesis in most cell types. In most of the prostate tumors, Akt signaling is constitutively activated due to the deletion or mutation of the tumor suppressor PTEN, which negatively regulates phosphatidylinositol 3-kinase through lipid phosphatase activity. Recently, we identified a natural compound, psoralidin, which inhibits Akt phosphorylation, and its consequent activation in androgen-independent prostate cancer (AIPC) cells. Furthermore, ectopic expression of Akt renders AIPC cells resistant to chemotherapy; however, psoralidin overcomes Akt-mediated resistance and induces apoptosis in AIPC cells. While dissecting the molecular events, both upstream and downstream of Akt, we found that psoralidin inhibits phosphatidylinositol 3-kinase activation and transcriptionally represses the activation of nuclear factor-κB and its target genes (Bcl-2, Survivin, and Bcl-xL, etc.), which results in the inhibition of cell viability and induction of apoptosis in PC-3 and DU-145 cells. Interestingly, psoralidin selectively targets cancer cells without causing any toxicity to normal prostate epithelial cells. In vivo xenograft assays substantiate these in vitro findings and show that psoralidin inhibits prostate tumor growth in nude mice. Our findings are of therapeutic significance in the management of prostate cancer patients with advanced or metastatic disease, as they provide new directions for the development of a phytochemical-based platform for prevention and treatment strategies for AIPC.
AB - The protein kinase Akt plays an important role in cell proliferation and survival in many cancers, including prostate cancer. Due to its kinase activity, it serves as a molecular conduit for inhibiting apoptosis and promoting angiogenesis in most cell types. In most of the prostate tumors, Akt signaling is constitutively activated due to the deletion or mutation of the tumor suppressor PTEN, which negatively regulates phosphatidylinositol 3-kinase through lipid phosphatase activity. Recently, we identified a natural compound, psoralidin, which inhibits Akt phosphorylation, and its consequent activation in androgen-independent prostate cancer (AIPC) cells. Furthermore, ectopic expression of Akt renders AIPC cells resistant to chemotherapy; however, psoralidin overcomes Akt-mediated resistance and induces apoptosis in AIPC cells. While dissecting the molecular events, both upstream and downstream of Akt, we found that psoralidin inhibits phosphatidylinositol 3-kinase activation and transcriptionally represses the activation of nuclear factor-κB and its target genes (Bcl-2, Survivin, and Bcl-xL, etc.), which results in the inhibition of cell viability and induction of apoptosis in PC-3 and DU-145 cells. Interestingly, psoralidin selectively targets cancer cells without causing any toxicity to normal prostate epithelial cells. In vivo xenograft assays substantiate these in vitro findings and show that psoralidin inhibits prostate tumor growth in nude mice. Our findings are of therapeutic significance in the management of prostate cancer patients with advanced or metastatic disease, as they provide new directions for the development of a phytochemical-based platform for prevention and treatment strategies for AIPC.
UR - http://www.scopus.com/inward/record.url?scp=68349105686&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=68349105686&partnerID=8YFLogxK
U2 - 10.1158/1940-6207.CAPR-08-0129
DO - 10.1158/1940-6207.CAPR-08-0129
M3 - Article
C2 - 19223576
AN - SCOPUS:68349105686
SN - 1940-6207
VL - 2
SP - 234
EP - 243
JO - Cancer Prevention Research
JF - Cancer Prevention Research
IS - 3
ER -