PZT-based high coupling with low permittivity thin films

Kiyotaka Wasa, Tomoaki Matsushima, Hideaki Adachi, Toshifumi Matsunaga, Masashi Suzuki, Takahiko Yanagitani, Takashi Yamamoto, Shinya Yoshida, Shuji Tanaka, S. Trolier-Mckinstry

Research output: Contribution to conferencePaperpeer-review

Abstract

PZT-based piezoelectric thin films will make better piezoelectric devices including piezoelectric energy harvesting (EH) power MEMS, when the piezoelectric thin films show high electromechanical coupling and/or high piezoelectric constants with low permittivity. The piezoelectric thin films are mostly polycrystalline structure with high piezoelectric constants and high dielectric constants, i.e. ε*=300-1300 and e31,f = -8 ∼ - 12C/m2. Recently we have found thin films of single c-domain/single crystal PZT-based ternary perovskite, Pb(Mn,Nb)-PZT, exhibit exotic properties, i.e. high coupling and/or high piezoelectric constants with low dielectric constants opposed to the PZT-based thin films. The relative dielectric constants are as low as 100 with e31,f = -12 C/m 2. The low dielectric constants achieve high values of Figures of Merit for the EH-MEMS. This paper will discuss on the origin of the exotic dielectric and piezoelectric properties of the single c-domain/single crystal thin films in comparison with bulk PZT-based ceramics.

Original languageEnglish (US)
Pages69-72
Number of pages4
DOIs
StatePublished - 2013
Event2013 Joint IEEE International Symposium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy, ISAF/PFM 2013 - Prague 4, Czech Republic
Duration: Jul 21 2013Jul 25 2013

Other

Other2013 Joint IEEE International Symposium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy, ISAF/PFM 2013
Country/TerritoryCzech Republic
CityPrague 4
Period7/21/137/25/13

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'PZT-based high coupling with low permittivity thin films'. Together they form a unique fingerprint.

Cite this