Q-Embroidery: A Study on Weaving Quantum Error Correction into the Fabric of Quantum Classifiers

Avimita Chatterjee, Debarshi Kundu, Swaroop Ghosh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Quantum computing holds transformative potential for various fields, yet its practical application is hindered by the susceptibility to errors. This study makes a pioneering contribution by applying quantum error correction codes (QECCs) for complex, multi-qubit classification tasks. We implement 1-qubit and 2-qubit quantum classifiers with QECCs, specifically the Steane code, and the distance 3 & 5 surface codes to analyze 2-dimensional and 4-dimensional datasets. This research uniquely evaluates the performance of these QECCs in enhancing the robustness and accuracy of quantum classifiers against various physical errors, including bit-flip, phase-flip, and depolarizing errors. The results emphasize that the effectiveness of a QECC in practical scenarios depends on various factors, including qubit availability, desired accuracy, and the specific types and levels of physical errors, rather than solely on theoretical superiority.

Original languageEnglish (US)
Title of host publicationGLSVLSI 2024 - Proceedings of the Great Lakes Symposium on VLSI 2024
PublisherAssociation for Computing Machinery
Pages119-124
Number of pages6
ISBN (Electronic)9798400706059
DOIs
StatePublished - Jun 12 2024
Event34th Great Lakes Symposium on VLSI 2024, GLSVLSI 2024 - Clearwater, United States
Duration: Jun 12 2024Jun 14 2024

Publication series

NameProceedings of the ACM Great Lakes Symposium on VLSI, GLSVLSI

Conference

Conference34th Great Lakes Symposium on VLSI 2024, GLSVLSI 2024
Country/TerritoryUnited States
CityClearwater
Period6/12/246/14/24

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'Q-Embroidery: A Study on Weaving Quantum Error Correction into the Fabric of Quantum Classifiers'. Together they form a unique fingerprint.

Cite this