TY - JOUR
T1 - Q-series identities and values of certain L-functions
AU - Andrews, George E.
AU - Jiménez-Urroz, Jorge
AU - Ono, Ken
PY - 2001
Y1 - 2001
N2 - As usual, define Dedekind's eta-function η(z) by the infinite product η(z}:=q1/24 ∏n=1∞ (1-qn) (q:=e2πix throughout). In a recent paper, D. Zagier proved that (note: empty products equal 1 throughout) ∑n=0∞(η(24x)-q(1-q24)(1-q 48)⋯(1-q24n))=η(24x))D(q)+E(q), where the series D(q) and E(q) are defined by D(q) = -1/2+∑n=1∞ q24n/1-q24n = -1/2+∑n=1∞d(n)q24n = -1/2+q24+2q48+2q72+3q96+... E(q) = 1/2∑n=1∞(12/n)nqn2=1/2q-5/2q 25-7/2q49+11/2q121+... Here d(n) denotes the number of positive divisors of n. We obtain two infinite families of such identities and describe some consequences for L-functions and partitions. For example, if χ2 is the Kronecker character for Q(√2), these identities can be used to show that -2e-t/8 ∑n=0∞ (1-e-2t) (1-e-4t)⋯(1-e-2nt)/1+e-t(1+e -3t)⋯(1+e-(2n+1)t) = ∑n=0∞(-1/8)n ·L(χ2,-2n-1)·tn/n
AB - As usual, define Dedekind's eta-function η(z) by the infinite product η(z}:=q1/24 ∏n=1∞ (1-qn) (q:=e2πix throughout). In a recent paper, D. Zagier proved that (note: empty products equal 1 throughout) ∑n=0∞(η(24x)-q(1-q24)(1-q 48)⋯(1-q24n))=η(24x))D(q)+E(q), where the series D(q) and E(q) are defined by D(q) = -1/2+∑n=1∞ q24n/1-q24n = -1/2+∑n=1∞d(n)q24n = -1/2+q24+2q48+2q72+3q96+... E(q) = 1/2∑n=1∞(12/n)nqn2=1/2q-5/2q 25-7/2q49+11/2q121+... Here d(n) denotes the number of positive divisors of n. We obtain two infinite families of such identities and describe some consequences for L-functions and partitions. For example, if χ2 is the Kronecker character for Q(√2), these identities can be used to show that -2e-t/8 ∑n=0∞ (1-e-2t) (1-e-4t)⋯(1-e-2nt)/1+e-t(1+e -3t)⋯(1+e-(2n+1)t) = ∑n=0∞(-1/8)n ·L(χ2,-2n-1)·tn/n
UR - http://www.scopus.com/inward/record.url?scp=0000513672&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0000513672&partnerID=8YFLogxK
U2 - 10.1215/S0012-7094-01-10831-4
DO - 10.1215/S0012-7094-01-10831-4
M3 - Article
AN - SCOPUS:0000513672
SN - 0012-7094
VL - 108
SP - 395
EP - 419
JO - Duke Mathematical Journal
JF - Duke Mathematical Journal
IS - 3
ER -