Quality assessment and lifetime prediction of base metal electrode multilayer ceramic capacitors: Challenges and opportunities

Pedram Yousefian, Clive A. Randall

Research output: Contribution to journalArticlepeer-review

Abstract

Base metal electrode (BME) multilayer ceramic capacitors (MLCCs) are widely used in aerospace, medical, military, and communication applications, emphasizing the need for high reliability. The ongoing advancements in BaTiO3-based MLCC technology have facilitated further miniaturization and improved capacitive volumetric density for both low and high voltage devices. However, concerns persist regarding infant mortality failures and long-term reliability under higher fields and temperatures. To address these concerns, a comprehensive understanding of the mechanisms underlying insulation resistance degradation is crucial. Furthermore, there is a need to develop effective screening procedures during MLCC production and improve the accuracy of mean time to failure (MTTF) predictions. This article reviews our findings on the effect of the burn-in test, a common quality control process, on the dynamics of oxygen vacancies within BME MLCCs. These findings reveal the burn-in test has a negative impact on the lifetime and reliability of BME MLCCS. Moreover, the limitations of existing lifetime prediction models for BME MLCCs are discussed, emphasizing the need for improved MTTF predictions by employing a physics-based machine learning model to overcome the existing models’ limitations. The article also discusses the new physical-based machine learning model that has been developed. While data limitations remain a challenge, the physics-based machine learning approach offers promising results for MTTF prediction in MLCCs, contributing to improved lifetime predictions. Furthermore, the article acknowledges the limitations of relying solely on MTTF to predict MLCCs’ lifetime and emphasizes the importance of developing comprehensive prediction models that predict the entire distribution of failures.

Original languageEnglish (US)
Article number100045
JournalPower Electronic Devices and Components
Volume6
DOIs
StatePublished - Oct 2023

All Science Journal Classification (ASJC) codes

  • Computer Science (miscellaneous)
  • Engineering (miscellaneous)
  • Physics and Astronomy (miscellaneous)

Cite this