TY - GEN
T1 - Quality assessment of additively manufactured fiducial markers to support augmented reality-based part inspection
AU - Mathur, Jayant
AU - Basu, Saurabh
AU - Menold, Jessica
AU - Meisel, Nicholas A.
N1 - Publisher Copyright:
© 2020 American Society of Mechanical Engineers (ASME). All rights reserved.
PY - 2020
Y1 - 2020
N2 - This paper proposes an augmented reality (AR) framework and tool on smartphones as an alternative to conventional inspection for AM parts. The framework attempts to introduce the rapid inspection potential of smartphone based AR within manufacturing by leveraging the manufacturing capability of additive manufacturing (AM) to integrate markers onto AM parts. The key step from this framework that is explored in this paper is the design and quality assessment of AM markers for marker registration. As part of the marker design and quality assessment objectives, this research conducts an evaluation on the effects of different AM processes on the quality of augmentation achieved from AM fiducial markers. Furthermore, it evaluates the minimum fiducial pattern size that on integration onto AM parts will be viable for augmentation. The results suggest that the AM process and the size of the fiducial pattern play a significant role in determining the quality of the AM markers.
AB - This paper proposes an augmented reality (AR) framework and tool on smartphones as an alternative to conventional inspection for AM parts. The framework attempts to introduce the rapid inspection potential of smartphone based AR within manufacturing by leveraging the manufacturing capability of additive manufacturing (AM) to integrate markers onto AM parts. The key step from this framework that is explored in this paper is the design and quality assessment of AM markers for marker registration. As part of the marker design and quality assessment objectives, this research conducts an evaluation on the effects of different AM processes on the quality of augmentation achieved from AM fiducial markers. Furthermore, it evaluates the minimum fiducial pattern size that on integration onto AM parts will be viable for augmentation. The results suggest that the AM process and the size of the fiducial pattern play a significant role in determining the quality of the AM markers.
UR - http://www.scopus.com/inward/record.url?scp=85096301916&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096301916&partnerID=8YFLogxK
U2 - 10.1115/DETC2020-22172
DO - 10.1115/DETC2020-22172
M3 - Conference contribution
AN - SCOPUS:85096301916
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 46th Design Automation Conference (DAC)
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2020
Y2 - 17 August 2020 through 19 August 2020
ER -