Quantification of displacement mechanisms in multicomponent gasfloods

Russell T. Johns, Hua Yuan, Birol Dindoruk

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Local displacement efficiency in gasfloods depends strongly on the minimum miscibility pressure (MMP) or minimum miscibility enrichment (MME). The values for these design parameters depend in turn on the displacement mechanisms: vaporizing, condensing, or a combination of the two known as a condensing/vaporizing (CV) drive. Characterization of the displacement mechanism, however, is currently limited to these broad categories, with little reference to the degree to which a CV displacement is condensing or vaporizing. This "discrete" classification approach can result in significant confusion in the interpretation and comparison of various miscible gasfloods. The focus of this paper, therefore, is to present a method to quantify in a continuous way the fraction of a multicomponent gasflood that is vaporizing or condensing as the pressure or gas enrichment is increased. The approach relies on finding key tie lines for a dispersion-free 1D displacement using method of characteristic theory (MOC). We quantify the displacement mechanism for any number of oil or gas components by calculating the displacement path lengths along ruled surfaces bounded by these key tie lines. We show how to determine the displacement mechanism along each of these ruled surfaces by the calculation and comparison of the key tie-line lengths. Several multicomponent fluid characterizations are considered, including a 12-component enriched-gasflood and a 13-component CO2 flood. The results show that as the pressure or enrichment is increased, condensation occurs at the expense of vaporization. We also show by numerical simulations that the sensitivity of the local displacement efficiency to dispersion depends on the condensing fraction of the displacement. We show that the trends in displacement efficiency sensitivity to dispersion oppose previously published results, which showed that vaporizing displacements are more sensitive to dispersion than condensing ones. The differing trends are likely the result of improper and discrete determination of the displacement mechanism.

Original languageEnglish (US)
Pages (from-to)314-321
Number of pages8
JournalSPE Journal
Issue number3
StatePublished - Sep 2004

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Geotechnical Engineering and Engineering Geology


Dive into the research topics of 'Quantification of displacement mechanisms in multicomponent gasfloods'. Together they form a unique fingerprint.

Cite this