TY - GEN
T1 - Quantified brain asymmetry for age estimation of normal and AD/MCI subjects
AU - Teverovskiy, L. A.
AU - Becker, J. T.
AU - Lopez, O. L.
AU - Liu, Y.
PY - 2008
Y1 - 2008
N2 - We propose a quantified asymmetry based method for age estimation. Our method uses machine learning to discover automatically the most discriminative asymmetry feature set from different brain regions and image scales. Applying this regression model on a T1 MR brain image set of 246 healthy individuals (121 females; 125 males, 66 ± 7.5 years old), we achieve a mean absolute error of 5.4 years and a mean signed error of -0.2 years for age estimation on unseen MR images using the stringent leave-15%-out cross validation. Our results show significant changes in asymmetry with aging in the following regions: the posterior horns of the lateral ventricles, the amygdala, the ventral putamen with a nearby region of the anterior inferior caudate nucleus, the basal forebrain, hyppocampus and parahyppocampal regions. We confirm the validity of the age estimation model using permutation test on 30 replicas of the original dataset with randomly permuted ages (with p-value < 0.001). Furthermore, we apply this model to a separate set of MR images containing normal, Alzheimer's disease (AD) and mild cognitive impairment (MCI) subjects. Our results reflect the relative severity of brain pathology between the three subject groups: mean signed age estimation error is 0.6 years for normal controls, 2.2 years for MCI patients, and 4.7 years for AD patients.
AB - We propose a quantified asymmetry based method for age estimation. Our method uses machine learning to discover automatically the most discriminative asymmetry feature set from different brain regions and image scales. Applying this regression model on a T1 MR brain image set of 246 healthy individuals (121 females; 125 males, 66 ± 7.5 years old), we achieve a mean absolute error of 5.4 years and a mean signed error of -0.2 years for age estimation on unseen MR images using the stringent leave-15%-out cross validation. Our results show significant changes in asymmetry with aging in the following regions: the posterior horns of the lateral ventricles, the amygdala, the ventral putamen with a nearby region of the anterior inferior caudate nucleus, the basal forebrain, hyppocampus and parahyppocampal regions. We confirm the validity of the age estimation model using permutation test on 30 replicas of the original dataset with randomly permuted ages (with p-value < 0.001). Furthermore, we apply this model to a separate set of MR images containing normal, Alzheimer's disease (AD) and mild cognitive impairment (MCI) subjects. Our results reflect the relative severity of brain pathology between the three subject groups: mean signed age estimation error is 0.6 years for normal controls, 2.2 years for MCI patients, and 4.7 years for AD patients.
UR - http://www.scopus.com/inward/record.url?scp=51049109621&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=51049109621&partnerID=8YFLogxK
U2 - 10.1109/ISBI.2008.4541295
DO - 10.1109/ISBI.2008.4541295
M3 - Conference contribution
AN - SCOPUS:51049109621
SN - 9781424420032
T3 - 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Proceedings, ISBI
SP - 1509
EP - 1512
BT - 2008 5th IEEE International Symposium on Biomedical Imaging
T2 - 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI
Y2 - 14 May 2008 through 17 May 2008
ER -