Quantifying political legitimacy from Twitter

Haibin Liu, Dongwon Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

We present a method to quantify the political legitimacy of a populace using public Twitter data. First, we represent the notion of legitimacy with respect to k-dimensional probabilistic topics, automatically culled from the politically oriented corpus. The short tweets are then converted to a feature vector in k-dimensional topic space. Leveraging sentiment analysis, we also consider the polarity of each tweet. Finally, we aggregate a large number of tweets into a final legitimacy score (i.e., L-score) for a populace. To validate our proposal, we conduct an empirical analysis on eight sample countries using related public tweets, and find that some of our proposed methods yield L-scores strongly correlated with those reported by political scientists.

Original languageEnglish (US)
Title of host publicationSocial Computing, Behavioral-Cultural Modeling, and Prediction - 7th International Conference, SBP 2014, Proceedings
PublisherSpringer Verlag
Pages111-118
Number of pages8
ISBN (Print)9783319055787
DOIs
StatePublished - 2014
Event7th International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction, SBP 2014 - Washington, DC, United States
Duration: Apr 1 2014Apr 4 2014

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume8393 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other7th International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction, SBP 2014
Country/TerritoryUnited States
CityWashington, DC
Period4/1/144/4/14

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Quantifying political legitimacy from Twitter'. Together they form a unique fingerprint.

Cite this