TY - JOUR
T1 - Quantifying the Effect Size of Exposure-Outcome Association Using δ-Score
T2 - Application to Environmental Chemical Mixture Studies
AU - Midya, Vishal
AU - Liao, Jiangang
AU - Gennings, Chris
AU - Colicino, Elena
AU - Teitelbaum, Susan L.
AU - Wright, Robert O.
AU - Valvi, Damaskini
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/10
Y1 - 2022/10
N2 - Epidemiologists often study the associations between a set of exposures and multiple biologically relevant outcomes. However, the frequently used scale-and-context-dependent regression coefficients may not offer meaningful comparisons and could further complicate the interpretation if these outcomes do not have similar units. Additionally, when scaling up a hypothesis-driven study based on preliminary data, knowing how large to make the sample size is a major uncertainty for epidemiologists. Conventional p-value-based sample size calculations emphasize precision and might lead to a large sample size for small- to moderate-effect sizes. This asymmetry between precision and utility is costly and might lead to the detection of irrelevant effects. Here, we introduce the “ (Formula presented.) -score” concept, by modifying Cohen’s (Formula presented.). (Formula presented.) -score is scale independent and circumvents the challenges of regression coefficients. Further, under a new hypothesis testing framework, it quantifies the maximum Cohen’s (Formula presented.) with certain optimal properties. We also introduced “Sufficient sample size”, which is the minimum sample size required to attain a (Formula presented.) -score. Finally, we used data on adults from a 2017–2018 U.S. National Health and Nutrition Examination Survey to demonstrate how the (Formula presented.) -score and sufficient sample size reduced the asymmetry between precision and utility by finding associations between mixtures of per-and polyfluoroalkyl substances and metals with serum high-density and low-density lipoprotein cholesterol.
AB - Epidemiologists often study the associations between a set of exposures and multiple biologically relevant outcomes. However, the frequently used scale-and-context-dependent regression coefficients may not offer meaningful comparisons and could further complicate the interpretation if these outcomes do not have similar units. Additionally, when scaling up a hypothesis-driven study based on preliminary data, knowing how large to make the sample size is a major uncertainty for epidemiologists. Conventional p-value-based sample size calculations emphasize precision and might lead to a large sample size for small- to moderate-effect sizes. This asymmetry between precision and utility is costly and might lead to the detection of irrelevant effects. Here, we introduce the “ (Formula presented.) -score” concept, by modifying Cohen’s (Formula presented.). (Formula presented.) -score is scale independent and circumvents the challenges of regression coefficients. Further, under a new hypothesis testing framework, it quantifies the maximum Cohen’s (Formula presented.) with certain optimal properties. We also introduced “Sufficient sample size”, which is the minimum sample size required to attain a (Formula presented.) -score. Finally, we used data on adults from a 2017–2018 U.S. National Health and Nutrition Examination Survey to demonstrate how the (Formula presented.) -score and sufficient sample size reduced the asymmetry between precision and utility by finding associations between mixtures of per-and polyfluoroalkyl substances and metals with serum high-density and low-density lipoprotein cholesterol.
UR - http://www.scopus.com/inward/record.url?scp=85140920911&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85140920911&partnerID=8YFLogxK
U2 - 10.3390/sym14101962
DO - 10.3390/sym14101962
M3 - Article
AN - SCOPUS:85140920911
SN - 2073-8994
VL - 14
JO - Symmetry
JF - Symmetry
IS - 10
M1 - 1962
ER -