Quantifying the indirect impacts of climate on agriculture: An inter-method comparison

Kate Calvin, Karen Fisher-Vanden

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


Climate change and increases in CO2 concentration affect the productivity of land, with implications for land use, land cover, and agricultural production. Much of the literature on the effect of climate on agriculture has focused on linking projections of changes in climate to process-based or statistical crop models. However, the changes in productivity have broader economic implications that cannot be quantified in crop models alone. How important are these socio-economic feedbacks to a comprehensive assessment of the impacts of climate change on agriculture? In this paper, we attempt to measure the importance of these interaction effects through an inter-method comparison between process models, statistical models, and integrated assessment model (IAMs). We find the impacts on crop yields vary widely between these three modeling approaches. Yield impacts generated by the IAMs are 20%-40% higher than the yield impacts generated by process-based or statistical crop models, with indirect climate effects adjusting yields by between -12% and +15% (e.g. input substitution and crop switching). The remaining effects are due to technological change.

Original languageEnglish (US)
Article number115004
JournalEnvironmental Research Letters
Issue number11
StatePublished - Oct 27 2017

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • General Environmental Science
  • Public Health, Environmental and Occupational Health


Dive into the research topics of 'Quantifying the indirect impacts of climate on agriculture: An inter-method comparison'. Together they form a unique fingerprint.

Cite this