Abstract
Fluorescence assays often require specialized equipment and, therefore, are not easily implemented in resource-limited environments. Herein we describe a point-of-care assay strategy in which fluorescence in the visible region is used as a readout, while a camera-equipped cellular phone is used to capture the fluorescent response and quantify the assay. The fluorescence assay is made possible using a paper-based microfluidic device that contains an internal fluidic battery, a surface-mount LED, a 2 mm section of a clear straw as a cuvette, and an appropriately designed small molecule reagent that transforms from weakly fluorescent to highly fluorescent when exposed to a specific enzyme biomarker. The resulting visible fluorescence is digitized by photographing the assay region using a camera-equipped cellular phone. The digital images are then quantified using image processing software to provide sensitive as well as quantitative results. In a model 30 min assay, the enzyme β-d-galactosidase was measured quantitatively down to 700 pM levels. This communication describes the design of these types of assays in paper-based microfluidic devices and characterizes the key parameters that affect the sensitivity and reproducibility of the technique.
Original language | English (US) |
---|---|
Pages (from-to) | 1334-1340 |
Number of pages | 7 |
Journal | RSC Advances |
Volume | 4 |
Issue number | 3 |
DOIs | |
State | Published - 2014 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- General Chemical Engineering