Abstract
The proton mean kinetic energy, Ke(H), of water confined in nanocavities of beryl (Be3Al2Si6O18) at 5 K was obtained by simulating the partial vibrational density of states from density functional theory based first-principles calculations. The result, Ke(H) = 104.4 meV, is in remarkable agreement with the 5 K deep inelastic neutron scattering (DINS) measured value of 105 meV. This is in fact the first successful calculation that reproduces an anomalous DINS value regarding Ke(H) in nano-confined water. The calculation indicates that the vibrational states of the proton of the nano-confined water molecule distribute much differently than in ordinary H2O phases, most probably due to coupling with lattice modes of the hosting beryl nano-cage. These findings may be viewed as a promising step towards the resolution of the DINS controversial measurements on otherH2Onano-confining systems, e.g., H2O confined in single and double walled carbon nanotubes.
Original language | English (US) |
---|---|
Article number | 124307 |
Journal | Journal of Chemical Physics |
Volume | 146 |
Issue number | 12 |
DOIs | |
State | Published - Mar 28 2017 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy
- Physical and Theoretical Chemistry