Quantum superradiant and subradiant modes in plasmonic nanochannels

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We present a a plasmonic route to superradiant and subradiant effects excited by a pair of two-level emitters embedded inside plasmonic nanochannels. These channels can provide an effective epsilon-near-zero (ENZ) response in their cut-off frequency and Fabry-Perot (FP) resonances in higher frequencies. The plasmonic resonant modes are found to enhance the constructive (superradiance) or destructive (subradiance) interference between two different quantum emitters located inside the channels. The separation distance between neighboring emitters and their emission wavelength can be changed to dynamically control the collective emission properties of the plasmonic system. It is envisioned that the dynamic modification between superradiant and subradiant modes will find applications to future quantum communication and computing systems.

Original languageEnglish (US)
Title of host publication2016 URSI International Symposium on Electromagnetic Theory, EMTS 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages185-188
Number of pages4
ISBN (Electronic)9781509025022
DOIs
StatePublished - Sep 19 2016
Event2016 URSI International Symposium on Electromagnetic Theory, EMTS 2016 - Espoo, Finland
Duration: Aug 14 2016Aug 18 2016

Publication series

Name2016 URSI International Symposium on Electromagnetic Theory, EMTS 2016

Conference

Conference2016 URSI International Symposium on Electromagnetic Theory, EMTS 2016
Country/TerritoryFinland
CityEspoo
Period8/14/168/18/16

All Science Journal Classification (ASJC) codes

  • Instrumentation
  • Radiation

Fingerprint

Dive into the research topics of 'Quantum superradiant and subradiant modes in plasmonic nanochannels'. Together they form a unique fingerprint.

Cite this