TY - JOUR
T1 - Quinine bitterness and grapefruit liking associate with allelic variants in TAS2R31
AU - Hayes, John E.
AU - Feeney, Emma L.
AU - Nolden, Alissa A.
AU - McGeary, John E.
N1 - Publisher Copyright:
© The Author 2015. Published by Oxford University Press. All rights reserved.
PY - 2015/7/1
Y1 - 2015/7/1
N2 - Multiple psychophysical gene-association studies suggest a single nucleotide polymorphism (SNP) within the bitter receptor gene TAS2R19 on chromosome 12 may be functional. Previously, the Arg299Cys SNP (rs10772420) has been associated with differential bitterness of quinine and differential liking for grapefruit juice. However, quinine does not activate TAS2R19 in vitro; likewise, limonin and naringin, bitter compounds in grapefruit, do not activate TAS2R19 in vitro. Here, we examined quinine bitterness (whole-mouth swish-and-spit stimuli and regionally delivered quinine across 4 loci) and remembered liking for grapefruit juice to test whether they associate with SNPs in another nearby gene, TASR2R31. We observed SNP-phenotype associations between whole-mouth quinine bitterness and self-reported liking for grapefruit juice with SNPs in TAS2R31, and regional quinine bitterness followed a similar trend, but did not reach significance. Present data provide independent replication of prior associations reported for TAS2R19. However, we also observed strong linkage disequilibrium (LD) between TAS2R19 and TAS2R31 SNPs. When present data are considered in light of existing functional expression data, this suggests phenotypic associations reported previously for rs10772420 may potentially be due to LD between this SNP and polymorphism(s) in, or closer to, TAS2R31. If confirmed, this would reduce the number of TAS2Rs with putatively functional polymorphisms to 5.
AB - Multiple psychophysical gene-association studies suggest a single nucleotide polymorphism (SNP) within the bitter receptor gene TAS2R19 on chromosome 12 may be functional. Previously, the Arg299Cys SNP (rs10772420) has been associated with differential bitterness of quinine and differential liking for grapefruit juice. However, quinine does not activate TAS2R19 in vitro; likewise, limonin and naringin, bitter compounds in grapefruit, do not activate TAS2R19 in vitro. Here, we examined quinine bitterness (whole-mouth swish-and-spit stimuli and regionally delivered quinine across 4 loci) and remembered liking for grapefruit juice to test whether they associate with SNPs in another nearby gene, TASR2R31. We observed SNP-phenotype associations between whole-mouth quinine bitterness and self-reported liking for grapefruit juice with SNPs in TAS2R31, and regional quinine bitterness followed a similar trend, but did not reach significance. Present data provide independent replication of prior associations reported for TAS2R19. However, we also observed strong linkage disequilibrium (LD) between TAS2R19 and TAS2R31 SNPs. When present data are considered in light of existing functional expression data, this suggests phenotypic associations reported previously for rs10772420 may potentially be due to LD between this SNP and polymorphism(s) in, or closer to, TAS2R31. If confirmed, this would reduce the number of TAS2Rs with putatively functional polymorphisms to 5.
UR - http://www.scopus.com/inward/record.url?scp=84936763515&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84936763515&partnerID=8YFLogxK
U2 - 10.1093/chemse/bjv027
DO - 10.1093/chemse/bjv027
M3 - Article
C2 - 26024668
AN - SCOPUS:84936763515
SN - 0379-864X
VL - 40
SP - 437
EP - 443
JO - Chemical senses
JF - Chemical senses
IS - 6
ER -