TY - JOUR
T1 - Radiation hydrodynamics modelling of kilonovae with SNEC
AU - Wu, Zhenyu
AU - Ricigliano, Giacomo
AU - Kashyap, Rahul
AU - Perego, Albino
AU - Radice, David
N1 - Publisher Copyright:
© 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
PY - 2022/5/1
Y1 - 2022/5/1
N2 - We develop a method to compute synthetic kilonova light curves that combine numerical relativity simulations of neutron star mergers and the SNEC radiation-hydrodynamics code. We describe our implementation of initial and boundary conditions, r-process heating, and opacities for kilonova simulations. We validate our approach by carefully checking that energy conservation is satisfied and by comparing the SNEC results with those of two semi-analytic light-curve models. We apply our code to the calculation of colour light curves for three binaries having different mass ratios (equal and unequal mass) and different merger outcome (short-lived and long-lived remnants). We study the sensitivity of our results to hydrodynamic effects, nuclear physics uncertainties in the heating rates, and duration of the merger simulations. We find that hydrodynamics effects are typically negligible and that homologous expansion is a good approximation in most cases. However, pressure forces can amplify the impact of uncertainties in the radioactive heating rates. We also study the impact of shocks possibly launched into the outflows by a relativistic jet. None of our models match AT2017gfo, the kilonova in GW170817. This points to possible deficiencies in our merger simulations and kilonova models that neglect non-LTE effects and possible additional energy injection from the merger remnant and to the need to go beyond the assumption of spherical symmetry adopted in this work.
AB - We develop a method to compute synthetic kilonova light curves that combine numerical relativity simulations of neutron star mergers and the SNEC radiation-hydrodynamics code. We describe our implementation of initial and boundary conditions, r-process heating, and opacities for kilonova simulations. We validate our approach by carefully checking that energy conservation is satisfied and by comparing the SNEC results with those of two semi-analytic light-curve models. We apply our code to the calculation of colour light curves for three binaries having different mass ratios (equal and unequal mass) and different merger outcome (short-lived and long-lived remnants). We study the sensitivity of our results to hydrodynamic effects, nuclear physics uncertainties in the heating rates, and duration of the merger simulations. We find that hydrodynamics effects are typically negligible and that homologous expansion is a good approximation in most cases. However, pressure forces can amplify the impact of uncertainties in the radioactive heating rates. We also study the impact of shocks possibly launched into the outflows by a relativistic jet. None of our models match AT2017gfo, the kilonova in GW170817. This points to possible deficiencies in our merger simulations and kilonova models that neglect non-LTE effects and possible additional energy injection from the merger remnant and to the need to go beyond the assumption of spherical symmetry adopted in this work.
UR - http://www.scopus.com/inward/record.url?scp=85127931810&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127931810&partnerID=8YFLogxK
U2 - 10.1093/mnras/stac399
DO - 10.1093/mnras/stac399
M3 - Article
AN - SCOPUS:85127931810
SN - 0035-8711
VL - 512
SP - 328
EP - 347
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 1
ER -