Radiation Metabolomics. 3. Biomarker Discovery in the Urine of Gamma-Irradiated Rats Using a Simplified Metabolomics Protocol of Gas Chromatography-Mass Spectrometry Combined with Random Forests Machine Learning Algorithm

Christian Lanz, Andrew D. Patterson, Josef Slavk, Kristopher W. Krausz, Monika Ledermann, Frank J. Gonzalez, Jeffrey R. Idle

Research output: Contribution to journalArticlepeer-review

92 Scopus citations

Abstract

Radiation metabolomics employing mass spectral technologies represents a plausible means of high-throughput minimally invasive radiation biodosimetry. A simplified metabolomics protocol is described that employs ubiquitous gas chromatography-mass spectrometry and open source software including random forests machine learning algorithm to uncover latent biomarkers of 3 Gy γ radiation in rats. Urine was collected from six male Wistar rats and six sham-irradiated controls for 7 days, 4 prior to irradiation and 3 after irradiation. Water and food consumption, urine volume, body weight, and sodium, potassium, calcium, chloride, phosphate and urea excretion showed major effects from exposure to γ radiation. The metabolomics protocol uncovered several urinary metabolites that were significantly up-regulated (glyoxylate, threonate, thymine, uracil, p-cresol) and down-regulated (citrate, 2-oxoglutarate, adipate, pimelate, suberate, azelaate) as a result of radiation exposure. Thymine and uracil were shown to derive largely from thymidine and 2′-deoxyuridine, which are known radiation biomarkers in the mouse. The radiation metabolomic phenotype in rats appeared to derive from oxidative stress and effects on kidney function. Gas chromatography-mass spectrometry is a promising platform on which to develop the field of radiation metabolomics further and to assist in the design of instrumentation for use in detecting biological consequences of environmental radiation release.

Original languageEnglish (US)
Pages (from-to)198-212
Number of pages15
JournalRadiation research
Volume172
Issue number2
DOIs
StatePublished - Aug 2009

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Radiation
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Radiation Metabolomics. 3. Biomarker Discovery in the Urine of Gamma-Irradiated Rats Using a Simplified Metabolomics Protocol of Gas Chromatography-Mass Spectrometry Combined with Random Forests Machine Learning Algorithm'. Together they form a unique fingerprint.

Cite this