Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle

Zhen Chen, Linxiao Zhu, Aaswath Raman, Shanhui Fan

Research output: Contribution to journalArticlepeer-review

547 Scopus citations

Abstract

Radiative cooling technology utilizes the atmospheric transparency window (8-13 μm) to passively dissipate heat from Earth into outer space (3 K). This technology has attracted broad interests from both fundamental sciences and real world applications, ranging from passive building cooling, renewable energy harvesting and passive refrigeration in arid regions. However, the temperature reduction experimentally demonstrated, thus far, has been relatively modest. Here we theoretically show that ultra-large temperature reduction for as much as 60 °C from ambient is achievable by using a selective thermal emitter and by eliminating parasitic thermal load, and experimentally demonstrate a temperature reduction that far exceeds previous works. In a populous area at sea level, we have achieved an average temperature reduction of 37 °C from the ambient air temperature through a 24-h day-night cycle, with a maximal reduction of 42 °C that occurs when the experimental set-up enclosing the emitter is exposed to peak solar irradiance.

Original languageEnglish (US)
Article number13729
JournalNature communications
Volume7
DOIs
StatePublished - Dec 13 2016

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle'. Together they form a unique fingerprint.

Cite this