Radioreceptor assay for epidermal growth factor

Roger L. Ladda, Leslie P. Bullock, Terilee Gianopoulos, Lynn McCormick

Research output: Contribution to journalArticlepeer-review

46 Scopus citations


An established cell line of human lung fibroblasts with a high number of surface receptorsfor mouse epidermal growth factor (mEGF) was used to develop a simple and highly sensitive radioreceptor assay for EGF. 125I-Labeled mEGF competed mole for mole with unlabeled mEGF for specific receptors. Optimal range for discriminating EGF concentrations in body fluids and tissue extracts by a competitive binding assay was between 5 and 100 ng/ml. Interassay correlation of variation was 8.47% and the recovery of highly purified mEGF added to serum and urine samples was greater than 95%. Human serum and amniotic fluids contained about 24 and 4 ng/ml, respectively, of mEGF equivalents. Concentrations of mEGF in mouse urine and serum were highly variable and were 2- to 10-fold greater than that previously detected by radioimmune assay. Hypophysectomy nearly abolished submaxillary mEGF content in both male and female mice, but testosterone treatment of hypophysectomized animals restored normal concentrations of mEGF to the glands. mEGF added to culture medium disappeared with time as a function of the number of cellular EGF receptors indicating cellular degradation of the growth factor. The radioreceptor assay for EGF is based on the close biologic relationship between the cell receptor site and the native hormone and should prove to be a useful complementary tool to characterize the physiological role of EGF.

Original languageEnglish (US)
Pages (from-to)286-294
Number of pages9
JournalAnalytical Biochemistry
Issue numberC
StatePublished - 1979

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Radioreceptor assay for epidermal growth factor'. Together they form a unique fingerprint.

Cite this