TY - JOUR
T1 - Raman spectroscopy study of reduced strontium barium niobate (SBN61) and hints of supergrowth or intergrowth structures
AU - Primrose, Michael Shoji
AU - Toulouse, Jean
AU - Bock, Jonathan
AU - Randall, Clive
N1 - Funding Information:
This work has been partially supported by the National Science Foundation REU Grants PHY-0849416 and PHY-1359195 at Lehigh University and Grant DMR-1206518 at Penn State, as well as by an internal grant from Lehigh University.
Publisher Copyright:
© 2018 John Wiley & Sons, Ltd.
PY - 2018/11
Y1 - 2018/11
N2 - Reduced strontium barium niobate, SrxBa1 − xNb2O6 (SBN), is a potential candidate for oxide thermoelectrics. In order to understand the effects of oxygen reduction on the structure and properties of SBN, room temperature Raman spectra of reduced and unreduced crystals with composition x = 0.61 (SBN61) have been measured, fitted, and compared, for incident light polarized successively along the crystallographic a- and c-axes. Unexpectedly, the low wavenumber spectra (<200 cm−1) of reduced SBN are found to display much better resolved and intense peaks than those of unreduced SBN, suggestive of a more ordered and compact lattice arrangement in reduced SBN. Shape changes of certain peaks and the disappearance or appearance of other peaks (30 cm−1/1000 cm−1) are also observed as a result of reduction. Comparison of the experimental spectra and fits of the unreduced and reduced crystals are suggestive of a redistribution of the remaining oxygen anions, structural rearrangements, and the development of supergrowth or intergrowth structures in reduced SBN. The reduced spectra are found to be very similar to the published spectra of other complex oxides such as the H-form of niobium oxide, H-Nb2O5, or TiNb2O7, which are made up of a regular layered arrangement of blocks of corner-sharing and edge-sharing oxygen octahedra. These structural changes may play an important role in the enhanced electrical conductivity of reduced SBN perpendicular to the layers.
AB - Reduced strontium barium niobate, SrxBa1 − xNb2O6 (SBN), is a potential candidate for oxide thermoelectrics. In order to understand the effects of oxygen reduction on the structure and properties of SBN, room temperature Raman spectra of reduced and unreduced crystals with composition x = 0.61 (SBN61) have been measured, fitted, and compared, for incident light polarized successively along the crystallographic a- and c-axes. Unexpectedly, the low wavenumber spectra (<200 cm−1) of reduced SBN are found to display much better resolved and intense peaks than those of unreduced SBN, suggestive of a more ordered and compact lattice arrangement in reduced SBN. Shape changes of certain peaks and the disappearance or appearance of other peaks (30 cm−1/1000 cm−1) are also observed as a result of reduction. Comparison of the experimental spectra and fits of the unreduced and reduced crystals are suggestive of a redistribution of the remaining oxygen anions, structural rearrangements, and the development of supergrowth or intergrowth structures in reduced SBN. The reduced spectra are found to be very similar to the published spectra of other complex oxides such as the H-form of niobium oxide, H-Nb2O5, or TiNb2O7, which are made up of a regular layered arrangement of blocks of corner-sharing and edge-sharing oxygen octahedra. These structural changes may play an important role in the enhanced electrical conductivity of reduced SBN perpendicular to the layers.
UR - http://www.scopus.com/inward/record.url?scp=85052942809&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85052942809&partnerID=8YFLogxK
U2 - 10.1002/jrs.5471
DO - 10.1002/jrs.5471
M3 - Article
AN - SCOPUS:85052942809
SN - 0377-0486
VL - 49
SP - 1849
EP - 1859
JO - Journal of Raman Spectroscopy
JF - Journal of Raman Spectroscopy
IS - 11
ER -