TY - GEN
T1 - Random Sharpness-Aware Minimization
AU - Liu, Yong
AU - Mai, Siqi
AU - Cheng, Minhao
AU - Chen, Xiangning
AU - Hsieh, Cho Jui
AU - You, Yang
N1 - Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Currently, Sharpness-Aware Minimization (SAM) is proposed to seek the parameters that lie in a flat region to improve the generalization when training neural networks. In particular, a minimax optimization objective is defined to find the maximum loss value centered on the weight, out of the purpose of simultaneously minimizing loss value and loss sharpness. For the sake of simplicity, SAM applies one-step gradient ascent to approximate the solution of the inner maximization. However, one-step gradient ascent may not be sufficient and multi-step gradient ascents will cause additional training costs. Based on this observation, we propose a novel random smoothing based SAM (R-SAM) algorithm. To be specific, R-SAM essentially smooths the loss landscape, based on which we are able to apply the one-step gradient ascent on the smoothed weights to improve the approximation of the inner maximization. Further, we evaluate our proposed R-SAM on CIFAR and ImageNet datasets. The experimental results illustrate that R-SAM can consistently improve the performance on ResNet and Vision Transformer (ViT) training.
AB - Currently, Sharpness-Aware Minimization (SAM) is proposed to seek the parameters that lie in a flat region to improve the generalization when training neural networks. In particular, a minimax optimization objective is defined to find the maximum loss value centered on the weight, out of the purpose of simultaneously minimizing loss value and loss sharpness. For the sake of simplicity, SAM applies one-step gradient ascent to approximate the solution of the inner maximization. However, one-step gradient ascent may not be sufficient and multi-step gradient ascents will cause additional training costs. Based on this observation, we propose a novel random smoothing based SAM (R-SAM) algorithm. To be specific, R-SAM essentially smooths the loss landscape, based on which we are able to apply the one-step gradient ascent on the smoothed weights to improve the approximation of the inner maximization. Further, we evaluate our proposed R-SAM on CIFAR and ImageNet datasets. The experimental results illustrate that R-SAM can consistently improve the performance on ResNet and Vision Transformer (ViT) training.
UR - http://www.scopus.com/inward/record.url?scp=85152969094&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85152969094&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85152969094
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
A2 - Koyejo, S.
A2 - Mohamed, S.
A2 - Agarwal, A.
A2 - Belgrave, D.
A2 - Cho, K.
A2 - Oh, A.
PB - Neural information processing systems foundation
T2 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
Y2 - 28 November 2022 through 9 December 2022
ER -