RANK-NOSH: Efficient Predictor-Based Architecture Search via Non-Uniform Successive Halving

Ruochen Wang, Xiangning Chen, Minhao Cheng, Xiaocheng Tang, Cho Jui Hsieh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations

Abstract

Predictor-based algorithms have achieved remarkable performance in the Neural Architecture Search (NAS) tasks. However, these methods suffer from high computation costs, as training the performance predictor usually requires training and evaluating hundreds of architectures from scratch. Previous works along this line mainly focus on reducing the number of architectures required to fit the predictor. In this work, we tackle this challenge from a different perspective - improve search efficiency by cutting down the computation budget of architecture training. We propose NOn-uniform Successive Halving (NOSH), a hierarchical scheduling algorithm that terminates the training of underperforming architectures early to avoid wasting budget. To effectively leverage the non-uniform supervision signals produced by NOSH, we formulate predictor-based architecture search as learning to rank with pairwise comparisons. The resulting method - RANK-NOSH, reduces the search budget by ~ 5× while achieving competitive or even better performance than previous state-of-the-art predictor-based methods on various spaces and datasets.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages10357-10366
Number of pages10
ISBN (Electronic)9781665428125
DOIs
StatePublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: Oct 11 2021Oct 17 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period10/11/2110/17/21

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'RANK-NOSH: Efficient Predictor-Based Architecture Search via Non-Uniform Successive Halving'. Together they form a unique fingerprint.

Cite this