TY - JOUR
T1 - Rapid and sensitive detection of viral particles by coupling redox cycling and electrophoretic enrichment
AU - Butler, Derrick
AU - Ebrahimi, Aida
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/7/15
Y1 - 2022/7/15
N2 - The COVID-19 pandemic has highlighted the need for rapid, low-cost, and sensitive virus detection platforms to monitor and mitigate widespread outbreaks. Electrochemical sensors are a viable choice to fill this role but still require improvements to the signal magnitude, especially for early detection and low viral loads. Herein, finite element analysis of a novel biosensor concept for single virion counting using a generator-collector microelectrode design is presented. The proposed design combines a redox-cycling amplified electrochemical current with electrophoresis-driven electrode-particle collision for rapid virus detection. The effects of experimental (e.g. scan rate, collector bias) and geometric factors are studied to optimize the sensor design. Two generator-collector configurations are explored: a ring-disk configuration to analyze sessile droplets and an interdigitated electrode (IDE) design housed in a microchannel. For the ring-disk configuration, we calculate an amplification factor of ∼5 and collector efficiency of ∼0.8 for a generator-collector spacing of 600 nm. For the IDE, the collector efficiency is even larger, approaching unity. The dual-electrode mode is critical for increasing the current and electric field strength. As a result, the current steps upon virus capture are more than an order of magnitude larger compared to single-mode. Additionally, single virus capture times are reduced from over 700 s down to ∼20 s. Overall, the frequency of virus capture and magnitude of the electrochemical current steps depend on the virus properties and electrode configuration, with the IDE capable of single virus detection within seconds owing to better particle confinement in the microchannel.
AB - The COVID-19 pandemic has highlighted the need for rapid, low-cost, and sensitive virus detection platforms to monitor and mitigate widespread outbreaks. Electrochemical sensors are a viable choice to fill this role but still require improvements to the signal magnitude, especially for early detection and low viral loads. Herein, finite element analysis of a novel biosensor concept for single virion counting using a generator-collector microelectrode design is presented. The proposed design combines a redox-cycling amplified electrochemical current with electrophoresis-driven electrode-particle collision for rapid virus detection. The effects of experimental (e.g. scan rate, collector bias) and geometric factors are studied to optimize the sensor design. Two generator-collector configurations are explored: a ring-disk configuration to analyze sessile droplets and an interdigitated electrode (IDE) design housed in a microchannel. For the ring-disk configuration, we calculate an amplification factor of ∼5 and collector efficiency of ∼0.8 for a generator-collector spacing of 600 nm. For the IDE, the collector efficiency is even larger, approaching unity. The dual-electrode mode is critical for increasing the current and electric field strength. As a result, the current steps upon virus capture are more than an order of magnitude larger compared to single-mode. Additionally, single virus capture times are reduced from over 700 s down to ∼20 s. Overall, the frequency of virus capture and magnitude of the electrochemical current steps depend on the virus properties and electrode configuration, with the IDE capable of single virus detection within seconds owing to better particle confinement in the microchannel.
UR - http://www.scopus.com/inward/record.url?scp=85127479045&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127479045&partnerID=8YFLogxK
U2 - 10.1016/j.bios.2022.114198
DO - 10.1016/j.bios.2022.114198
M3 - Article
C2 - 35395617
AN - SCOPUS:85127479045
SN - 0956-5663
VL - 208
JO - Biosensors and Bioelectronics
JF - Biosensors and Bioelectronics
M1 - 114198
ER -