TY - GEN
T1 - RAPID
T2 - 13th International Conference on Learning Representations, ICLR 2025
AU - Jiang, Tanqiu
AU - Li, Changjiang
AU - Ma, Fenglong
AU - Wang, Ting
N1 - Publisher Copyright:
© 2025 13th International Conference on Learning Representations, ICLR 2025. All rights reserved.
PY - 2025
Y1 - 2025
N2 - Differentially private diffusion models (DPDMs) harness the remarkable generative capabilities of diffusion models while enforcing differential privacy (DP) for sensitive data. However, existing DPDM training approaches often suffer from significant utility loss, large memory footprint, and expensive inference cost, impeding their practical uses. To overcome such limitations, we present RAPID, a novel approach that integrates retrieval augmented generation (RAG) into DPDM training. Specifically, RAPID leverages available public data to build a knowledge base of sample trajectories; when training the diffusion model on private data, RAPID computes the early sampling steps as queries, retrieves similar trajectories from the knowledge base as surrogates, and focuses on training the later sampling steps in a differentially private manner. Extensive evaluation using benchmark datasets and models demonstrates that, with the same privacy guarantee, RAPID significantly outperforms state-of-the-art approaches by large margins in generative quality, memory footprint, and inference cost, suggesting that retrieval-augmented DP training represents a promising direction for developing future privacy-preserving generative models. The code is available at: https://github.com/TanqiuJiang/RAPID.
AB - Differentially private diffusion models (DPDMs) harness the remarkable generative capabilities of diffusion models while enforcing differential privacy (DP) for sensitive data. However, existing DPDM training approaches often suffer from significant utility loss, large memory footprint, and expensive inference cost, impeding their practical uses. To overcome such limitations, we present RAPID, a novel approach that integrates retrieval augmented generation (RAG) into DPDM training. Specifically, RAPID leverages available public data to build a knowledge base of sample trajectories; when training the diffusion model on private data, RAPID computes the early sampling steps as queries, retrieves similar trajectories from the knowledge base as surrogates, and focuses on training the later sampling steps in a differentially private manner. Extensive evaluation using benchmark datasets and models demonstrates that, with the same privacy guarantee, RAPID significantly outperforms state-of-the-art approaches by large margins in generative quality, memory footprint, and inference cost, suggesting that retrieval-augmented DP training represents a promising direction for developing future privacy-preserving generative models. The code is available at: https://github.com/TanqiuJiang/RAPID.
UR - https://www.scopus.com/pages/publications/105010194999
UR - https://www.scopus.com/inward/citedby.url?scp=105010194999&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:105010194999
T3 - 13th International Conference on Learning Representations, ICLR 2025
SP - 84134
EP - 84151
BT - 13th International Conference on Learning Representations, ICLR 2025
PB - International Conference on Learning Representations, ICLR
Y2 - 24 April 2025 through 28 April 2025
ER -