TY - JOUR
T1 - Rates of low-pH biological Fe(II) oxidation in the Appalachian Bituminous Coal Basin and the Iberian Pyrite Belt
AU - Larson, Lance N.
AU - Sánchez-España, Javier
AU - Burgos, William
N1 - Funding Information:
This work was partially supported by the US Office of Surface Mining Reclamation and Enforcement under Cooperative Agreement S11AC20005, by the Appalachian Research Initiative for Environmental Science (ARIES), and by the Spanish Ministry of Science and Innovation (project CGL2009-09070). ARIES is an industrial affiliates program at Virginia Tech, supported by members that include companies in the energy sector. The opinions and recommendations expressed herein are solely those of the authors and do not imply any endorsement by ARIES. The authors would like to thank Dr. Jenn Macalady, Christy Miller, Dr. Dan Jones, Carmen Falagán and Dr. Iñaki Yusta for their assistance in the field.
PY - 2014/8
Y1 - 2014/8
N2 - Low-pH Fe(II) oxidation can be exploited for the treatment of acid mine drainage (AMD). However, natural or engineered terraced iron formations (TIFs) are underutilized for AMD treatment because of uncertainties with respect to treatment performance. To address this problem we measured the rates of Fe(II) oxidation multiple times at eight sites in the Appalachian Bituminous Coal Basin and at three sites in the Iberian Pyrite Belt (IPB). Longitudinal geochemical transects were measured downstream of emergent anoxic AMD sources. Water velocities were measured at each sampling location and used to transform concentration versus distance profiles into concentration versus travel time for kinetic analysis of field data. Zero-order Fe(II) oxidation rates ranged from 8.60 to 81.3×10-7molL-1s-1 at the Appalachian sites and 13.1 to 67.9×10-7molL-1s-1 at the IPB sites. First-order Fe(II) oxidation rate constants ranged from 0.035 to 0.399min-1 at the Appalachian sites and 0.003 to 0.010min-1 at the IPB sites. Faster rates of Fe(II) oxidation were measured at two sites (one in Appalachia and one in IPB) where the emergent pH values were the lowest and little to no oxidative precipitation of Fe(III) occurred. Laboratory-based rates of Fe(II) oxidation were measured with TIF sediments and emergent AMD collected from seven Appalachian sites. First-order laboratory rate constants normalized to sediment biomass concentrations (measured by phospholipid fatty acids; PLFA) were positively correlated to first-order field rate constants. Biomass composition was relatively similar between all sites, and predominately comprised of proteobacteria and general PLFAs. A zero-order lab-based removal rate for dissolved Fe(T) was used to calculate area-based design criteria of 2.6-8.7gFeday-1m-2 (GDM) for both natural and engineered TIFs.
AB - Low-pH Fe(II) oxidation can be exploited for the treatment of acid mine drainage (AMD). However, natural or engineered terraced iron formations (TIFs) are underutilized for AMD treatment because of uncertainties with respect to treatment performance. To address this problem we measured the rates of Fe(II) oxidation multiple times at eight sites in the Appalachian Bituminous Coal Basin and at three sites in the Iberian Pyrite Belt (IPB). Longitudinal geochemical transects were measured downstream of emergent anoxic AMD sources. Water velocities were measured at each sampling location and used to transform concentration versus distance profiles into concentration versus travel time for kinetic analysis of field data. Zero-order Fe(II) oxidation rates ranged from 8.60 to 81.3×10-7molL-1s-1 at the Appalachian sites and 13.1 to 67.9×10-7molL-1s-1 at the IPB sites. First-order Fe(II) oxidation rate constants ranged from 0.035 to 0.399min-1 at the Appalachian sites and 0.003 to 0.010min-1 at the IPB sites. Faster rates of Fe(II) oxidation were measured at two sites (one in Appalachia and one in IPB) where the emergent pH values were the lowest and little to no oxidative precipitation of Fe(III) occurred. Laboratory-based rates of Fe(II) oxidation were measured with TIF sediments and emergent AMD collected from seven Appalachian sites. First-order laboratory rate constants normalized to sediment biomass concentrations (measured by phospholipid fatty acids; PLFA) were positively correlated to first-order field rate constants. Biomass composition was relatively similar between all sites, and predominately comprised of proteobacteria and general PLFAs. A zero-order lab-based removal rate for dissolved Fe(T) was used to calculate area-based design criteria of 2.6-8.7gFeday-1m-2 (GDM) for both natural and engineered TIFs.
UR - http://www.scopus.com/inward/record.url?scp=84902342064&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84902342064&partnerID=8YFLogxK
U2 - 10.1016/j.apgeochem.2014.05.012
DO - 10.1016/j.apgeochem.2014.05.012
M3 - Article
AN - SCOPUS:84902342064
SN - 0883-2927
VL - 47
SP - 85
EP - 98
JO - Applied Geochemistry
JF - Applied Geochemistry
ER -