Reachable workspace with real-time motion capture feedback to quantify upper extremity function: A study on children with brachial plexus birth injury

R. Tyler Richardson, Stephanie A. Russo, Ross S. Chafetz, Spencer Warshauer, Emily Nice, Scott H. Kozin, Dan A. Zlotolow, James G. Richards

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Clinical upper extremity (UE) functional assessments and motion capture measures are limited to a set of postures and/or motions that may provide an incomplete evaluation of UE functionality. Reachable workspace analysis offers a more global assessment of UE function, but is reliant on patient compliance with instructions and may result in underestimates of a patient's true UE function. This study evaluated a clinical tool that incorporates real-time visual feedback with motion capture to provide an innovative means of engaging patients to ensure a ‘best effort’ quantification of their available UE workspace. Reachable workspace for 10 children with brachial plexus birth injury was collected with and without real-time feedback on the affected and unaffected limbs. Real-time feedback consisted of subjects reaching for virtual targets surrounding their physical space using a virtual cursor controlled by the real-time location of their hand. Real-time feedback resulted in significantly greater workspace in multiple regions on both the affected (3/6 octants; mean differences 10.8%-20.0%) and unaffected (6/6 octants; mean differences 24.3%-40.0%) limbs. Use of real-time feedback also yielded significant interlimb differences in workspace across more regions (4/6 octants; mean differences 29.0%-39.9% vs. 1/6 octants; mean difference 17%). Finally, real-time feedback resulted in significant interlimb differences in median reach distance across more regions (4/6 octants; mean differences 7.5%-44.8% vs. 1/6 octants; mean difference 11.2%). A reachable workspace tool with real-time feedback results in more workspace and UE function recorded and offers a highly visual and intuitive depiction of a patient's UE abilities.

Original languageEnglish (US)
Article number110939
JournalJournal of Biomechanics
Volume132
DOIs
StatePublished - Feb 2022

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Orthopedics and Sports Medicine
  • Biomedical Engineering
  • Rehabilitation

Fingerprint

Dive into the research topics of 'Reachable workspace with real-time motion capture feedback to quantify upper extremity function: A study on children with brachial plexus birth injury'. Together they form a unique fingerprint.

Cite this