TY - JOUR
T1 - Reactive AgAuS and Ag3AuS2 Synthons Enable the Sequential Transformation of Spherical Nanocrystals into Asymmetric Multicomponent Hybrid Nanoparticles
AU - Li, Xuefei
AU - Schaak, Raymond E.
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/5/9
Y1 - 2017/5/9
N2 - Nanoscale heterostructures that interface with multiple distinct materials provide opportunities to engineer functional complexity into single-particle constructs. However, existing synthetic pathways to such hybrid nanoparticles emphasize surface-seeded growth, which limits the scope of accessible systems. Here, we introduce an alternative approach that transforms isotropic nanocrystals into asymmetric, multicomponent Janus particles through sequential deposition, reactive phase segregation, and cation exchange processes that are mediated by an unusual class of reactive synthons. After Ag-Au seed particles had formed and had reacted with sulfur, a series of segregated Au1-xAgx-AgAuS and Au1-xAgx-Ag3AuS2 hybrid nanoparticles form. The AgAuS and Ag3AuS2 domains provide a synthetic entryway into solution-mediated cation exchange reactions, with the compositions of the Ag-Au-S synthons defining the components, morphologies, and interfaces of the hybrid nanoparticle products. Upon cation exchange with Pb2+, Au1-xAgx-AgAuS forms Ag1-xAux-PbS heterodimers while Au1-xAgx-Ag3AuS2 forms Ag1-xAux-Ag2S-PbS heterotrimers. The process by which isotropic metal nanoparticles transform into asymmetric hybrid nanoparticles through reactive Ag-Au-S synthons provides important insights that will be applicable to the retrosynthetic design of complex nanoscale heterostructures having expanded multifunctionality and synergistic properties.
AB - Nanoscale heterostructures that interface with multiple distinct materials provide opportunities to engineer functional complexity into single-particle constructs. However, existing synthetic pathways to such hybrid nanoparticles emphasize surface-seeded growth, which limits the scope of accessible systems. Here, we introduce an alternative approach that transforms isotropic nanocrystals into asymmetric, multicomponent Janus particles through sequential deposition, reactive phase segregation, and cation exchange processes that are mediated by an unusual class of reactive synthons. After Ag-Au seed particles had formed and had reacted with sulfur, a series of segregated Au1-xAgx-AgAuS and Au1-xAgx-Ag3AuS2 hybrid nanoparticles form. The AgAuS and Ag3AuS2 domains provide a synthetic entryway into solution-mediated cation exchange reactions, with the compositions of the Ag-Au-S synthons defining the components, morphologies, and interfaces of the hybrid nanoparticle products. Upon cation exchange with Pb2+, Au1-xAgx-AgAuS forms Ag1-xAux-PbS heterodimers while Au1-xAgx-Ag3AuS2 forms Ag1-xAux-Ag2S-PbS heterotrimers. The process by which isotropic metal nanoparticles transform into asymmetric hybrid nanoparticles through reactive Ag-Au-S synthons provides important insights that will be applicable to the retrosynthetic design of complex nanoscale heterostructures having expanded multifunctionality and synergistic properties.
UR - http://www.scopus.com/inward/record.url?scp=85019130553&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85019130553&partnerID=8YFLogxK
U2 - 10.1021/acs.chemmater.7b01449
DO - 10.1021/acs.chemmater.7b01449
M3 - Article
AN - SCOPUS:85019130553
SN - 0897-4756
VL - 29
SP - 4153
EP - 4160
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 9
ER -