Real structure of lattice matched GaAs-Fe3Si core-shell nanowires

B. Jenichen, M. Hilse, J. Herfort, A. Trampert

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

GaAs nanowires and GaAs-Fe3Si core-shell nanowire structures were grown by molecular-beam epitaxy on oxidized Si(111) substrates and characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Ga droplets were formed on the oxide surface, and the semiconducting GaAs nanowires grew epitaxially via the vapor-liquid-solid mechanism as single-crystals from holes in the oxide film. We observed two stages of growth of the GaAs nanowires, first the regular growth and second the residual growth after the Ga supply was finished. The magnetic Fe3Si shells were deposited in an As-free chamber. They completely cover the GaAs cores although they consist of small grains. High-resolution TEM micrographs depict the differently oriented grains in the Fe3Si shells. Selected area diffraction of electrons and XRD gave further evidence that the shells are textured and not single crystals. Facetting of the shells was observed, which lead to thickness inhomogeneities of the shells.

Original languageEnglish (US)
Pages (from-to)1-6
Number of pages6
JournalJournal of Crystal Growth
Volume410
DOIs
StatePublished - Jan 15 2015

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Real structure of lattice matched GaAs-Fe3Si core-shell nanowires'. Together they form a unique fingerprint.

Cite this