TY - JOUR
T1 - Real world scenarios in rare variant association analysis
T2 - The impact of imbalance and sample size on the power in silico
AU - Zhang, Xinyuan
AU - Basile, Anna O.
AU - Pendergrass, Sarah A.
AU - Ritchie, Marylyn D.
N1 - Publisher Copyright:
© 2019 The Author(s).
PY - 2019/1/22
Y1 - 2019/1/22
N2 - Background: The development of sequencing techniques and statistical methods provides great opportunities for identifying the impact of rare genetic variation on complex traits. However, there is a lack of knowledge on the impact of sample size, case numbers, the balance of cases vs controls for both burden and dispersion based rare variant association methods. For example, Phenome-Wide Association Studies may have a wide range of case and control sample sizes across hundreds of diagnoses and traits, and with the application of statistical methods to rare variants, it is important to understand the strengths and limitations of the analyses. Results: We conducted a large-scale simulation of randomly selected low-frequency protein-coding regions using twelve different balanced samples with an equal number of cases and controls as well as twenty-one unbalanced sample scenarios. We further explored statistical performance of different minor allele frequency thresholds and a range of genetic effect sizes. Our simulation results demonstrate that using an unbalanced study design has an overall higher type I error rate for both burden and dispersion tests compared with a balanced study design. Regression has an overall higher type I error with balanced cases and controls, while SKAT has higher type I error for unbalanced case-control scenarios. We also found that both type I error and power were driven by the number of cases in addition to the case to control ratio under large control group scenarios. Based on our power simulations, we observed that a SKAT analysis with case numbers larger than 200 for unbalanced case-control models yielded over 90% power with relatively well controlled type I error. To achieve similar power in regression, over 500 cases are needed. Moreover, SKAT showed higher power to detect associations in unbalanced case-control scenarios than regression. Conclusions: Our results provide important insights into rare variant association study designs by providing a landscape of type I error and statistical power for a wide range of sample sizes. These results can serve as a benchmark for making decisions about study design for rare variant analyses.
AB - Background: The development of sequencing techniques and statistical methods provides great opportunities for identifying the impact of rare genetic variation on complex traits. However, there is a lack of knowledge on the impact of sample size, case numbers, the balance of cases vs controls for both burden and dispersion based rare variant association methods. For example, Phenome-Wide Association Studies may have a wide range of case and control sample sizes across hundreds of diagnoses and traits, and with the application of statistical methods to rare variants, it is important to understand the strengths and limitations of the analyses. Results: We conducted a large-scale simulation of randomly selected low-frequency protein-coding regions using twelve different balanced samples with an equal number of cases and controls as well as twenty-one unbalanced sample scenarios. We further explored statistical performance of different minor allele frequency thresholds and a range of genetic effect sizes. Our simulation results demonstrate that using an unbalanced study design has an overall higher type I error rate for both burden and dispersion tests compared with a balanced study design. Regression has an overall higher type I error with balanced cases and controls, while SKAT has higher type I error for unbalanced case-control scenarios. We also found that both type I error and power were driven by the number of cases in addition to the case to control ratio under large control group scenarios. Based on our power simulations, we observed that a SKAT analysis with case numbers larger than 200 for unbalanced case-control models yielded over 90% power with relatively well controlled type I error. To achieve similar power in regression, over 500 cases are needed. Moreover, SKAT showed higher power to detect associations in unbalanced case-control scenarios than regression. Conclusions: Our results provide important insights into rare variant association study designs by providing a landscape of type I error and statistical power for a wide range of sample sizes. These results can serve as a benchmark for making decisions about study design for rare variant analyses.
UR - http://www.scopus.com/inward/record.url?scp=85060312380&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060312380&partnerID=8YFLogxK
U2 - 10.1186/s12859-018-2591-6
DO - 10.1186/s12859-018-2591-6
M3 - Article
C2 - 30669967
AN - SCOPUS:85060312380
SN - 1471-2105
VL - 20
JO - BMC bioinformatics
JF - BMC bioinformatics
IS - 1
M1 - 46
ER -