TY - JOUR
T1 - Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte
AU - Wang, Daiwei
AU - Jhang, Li Ji
AU - Kou, Rong
AU - Liao, Meng
AU - Zheng, Shiyao
AU - Jiang, Heng
AU - Shi, Pei
AU - Li, Guo Xing
AU - Meng, Kui
AU - Wang, Donghai
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/12
Y1 - 2023/12
N2 - Lithium-sulfur all-solid-state batteries using inorganic solid-state electrolytes are considered promising electrochemical energy storage technologies. However, developing positive electrodes with high sulfur content, adequate sulfur utilization, and high mass loading is challenging. Here, to address these concerns, we propose using a liquid-phase-synthesized Li3PS4-2LiBH4 glass-ceramic solid electrolyte with a low density (1.491 g cm−3), small primary particle size (~500 nm) and bulk ionic conductivity of 6.0 mS cm−1 at 25 °C for fabricating lithium-sulfur all-solid-state batteries. When tested in a Swagelok cell configuration with a Li-In negative electrode and a 60 wt% S positive electrode applying an average stack pressure of ~55 MPa, the all-solid-state battery delivered a high discharge capacity of about 1144.6 mAh g−1 at 167.5 mA g−1 and 60 °C. We further demonstrate that the use of the low-density solid electrolyte increases the electrolyte volume ratio in the cathode, reduces inactive bulky sulfur, and improves the content uniformity of the sulfur-based positive electrode, thus providing sufficient ion conduction pathways for battery performance improvement.
AB - Lithium-sulfur all-solid-state batteries using inorganic solid-state electrolytes are considered promising electrochemical energy storage technologies. However, developing positive electrodes with high sulfur content, adequate sulfur utilization, and high mass loading is challenging. Here, to address these concerns, we propose using a liquid-phase-synthesized Li3PS4-2LiBH4 glass-ceramic solid electrolyte with a low density (1.491 g cm−3), small primary particle size (~500 nm) and bulk ionic conductivity of 6.0 mS cm−1 at 25 °C for fabricating lithium-sulfur all-solid-state batteries. When tested in a Swagelok cell configuration with a Li-In negative electrode and a 60 wt% S positive electrode applying an average stack pressure of ~55 MPa, the all-solid-state battery delivered a high discharge capacity of about 1144.6 mAh g−1 at 167.5 mA g−1 and 60 °C. We further demonstrate that the use of the low-density solid electrolyte increases the electrolyte volume ratio in the cathode, reduces inactive bulky sulfur, and improves the content uniformity of the sulfur-based positive electrode, thus providing sufficient ion conduction pathways for battery performance improvement.
UR - http://www.scopus.com/inward/record.url?scp=85151897212&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85151897212&partnerID=8YFLogxK
U2 - 10.1038/s41467-023-37564-z
DO - 10.1038/s41467-023-37564-z
M3 - Article
C2 - 37019929
AN - SCOPUS:85151897212
SN - 2041-1723
VL - 14
JO - Nature communications
JF - Nature communications
IS - 1
M1 - 1895
ER -