TY - JOUR
T1 - Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors
AU - Lin, Yu Chuan
AU - Jariwala, Bhakti
AU - Bersch, Brian M.
AU - Xu, Ke
AU - Nie, Yifan
AU - Wang, Baoming
AU - Eichfeld, Sarah M.
AU - Zhang, Xiaotian
AU - Choudhury, Tanushree H.
AU - Pan, Yi
AU - Addou, Rafik
AU - Smyth, Christopher M.
AU - Li, Jun
AU - Zhang, Kehao
AU - Haque, M. Aman
AU - Fölsch, Stefan
AU - Feenstra, Randall M.
AU - Wallace, Robert M.
AU - Cho, Kyeongjae
AU - Fullerton-Shirey, Susan K.
AU - Redwing, Joan M.
AU - Robinson, Joshua A.
N1 - Publisher Copyright:
© 2018 American Chemical Society.
PY - 2018/2/27
Y1 - 2018/2/27
N2 - Atomically thin transition metal dichalcogenides (TMDs) are of interest for next-generation electronics and optoelectronics. Here, we demonstrate device-ready synthetic tungsten diselenide (WSe2) via metal-organic chemical vapor deposition and provide key insights into the phenomena that control the properties of large-area, epitaxial TMDs. When epitaxy is achieved, the sapphire surface reconstructs, leading to strong 2D/3D (i.e., TMD/substrate) interactions that impact carrier transport. Furthermore, we demonstrate that substrate step edges are a major source of carrier doping and scattering. Even with 2D/3D coupling, transistors utilizing transfer-free epitaxial WSe2/sapphire exhibit ambipolar behavior with excellent on/off ratios (∼107), high current density (1-10 μA·μm-1), and good field-effect transistor mobility (∼30 cm2·V-1·s-1) at room temperature. This work establishes that realization of electronic-grade epitaxial TMDs must consider the impact of the TMD precursors, substrate, and the 2D/3D interface as leading factors in electronic performance.
AB - Atomically thin transition metal dichalcogenides (TMDs) are of interest for next-generation electronics and optoelectronics. Here, we demonstrate device-ready synthetic tungsten diselenide (WSe2) via metal-organic chemical vapor deposition and provide key insights into the phenomena that control the properties of large-area, epitaxial TMDs. When epitaxy is achieved, the sapphire surface reconstructs, leading to strong 2D/3D (i.e., TMD/substrate) interactions that impact carrier transport. Furthermore, we demonstrate that substrate step edges are a major source of carrier doping and scattering. Even with 2D/3D coupling, transistors utilizing transfer-free epitaxial WSe2/sapphire exhibit ambipolar behavior with excellent on/off ratios (∼107), high current density (1-10 μA·μm-1), and good field-effect transistor mobility (∼30 cm2·V-1·s-1) at room temperature. This work establishes that realization of electronic-grade epitaxial TMDs must consider the impact of the TMD precursors, substrate, and the 2D/3D interface as leading factors in electronic performance.
UR - http://www.scopus.com/inward/record.url?scp=85042116564&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042116564&partnerID=8YFLogxK
U2 - 10.1021/acsnano.7b07059
DO - 10.1021/acsnano.7b07059
M3 - Article
C2 - 29360349
AN - SCOPUS:85042116564
SN - 1936-0851
VL - 12
SP - 965
EP - 975
JO - ACS nano
JF - ACS nano
IS - 2
ER -