recA-dependent and recA-independent N-ethyl-N-nitrosourea mutagenesis at a plasmid-encoded herpes simplex virus thymidine kinase gene in Escherichia coli

Kristin A. Eckert, Norman R. Drinkwater

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

We have compared isogenic recA13/recA+ Escherichia coli K-12 strains for the induction by N-ethylN-nitrosourea (ENU) of forward mutations at a plasmid-encoded herpes simplex virus type 1 thymidine kinase (HSV-tk) gene. Treatment of plasmid-bearing bacteria with ENU resulted in a dose-dependent increase in the mutant frequencies of the chromosomal udk locus and of the plasmid HSV-tk locus in both recA13 and recA+ strains. Although the recA13 strain was considerably more sensitive to the cytotoxic effects of ENU treatment than was the recA+ strain, the ENU-induced mutation frequency at both loci was greater for therecA+ strain than for the recA13 strain. When plasmid DNA modified by in vitro reaction with ENU was used to transform recA13, recA+, and UV pre-irradiated recA+ strains, an increase in the HSV-tk mutant frequency was observed in all 3 cases. The induction of mutations in recA13 and recA+ strains followed a similar dose-response, while the ENU-induced HSV-tk mutant frequency was significantly greater for UV pre-irradiated recA+ bacteria. These results indicate that fixation of ENU-induced premutagenic lesions can occur by both recA-independent pathways.

Original languageEnglish (US)
Pages (from-to)1-10
Number of pages10
JournalMutation Research - Fundamental and Molecular Mechanisms of Mutagenesis
Volume178
Issue number1
DOIs
StatePublished - May 1987

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Genetics
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'recA-dependent and recA-independent N-ethyl-N-nitrosourea mutagenesis at a plasmid-encoded herpes simplex virus thymidine kinase gene in Escherichia coli'. Together they form a unique fingerprint.

Cite this