TY - GEN
T1 - Recognition of implicit geographic movement in text
AU - Pezanowski, Scott
AU - Mitra, Prasenjit
N1 - Publisher Copyright:
© European Language Resources Association (ELRA), licensed under CC-BY-NC
PY - 2020
Y1 - 2020
N2 - Analyzing the geographic movement of humans, animals, and other phenomena is a growing field of research. This research has benefited urban planning, logistics, animal migration understanding, and much more. Typically, the movement is captured as precise geographic coordinates and time stamps with Global Positioning Systems (GPS). Although some research uses computational techniques to take advantage of implicit movement in descriptions of route directions, hiking paths, and historical exploration routes, innovation would accelerate with a large and diverse corpus. We created a corpus of sentences labeled as describing geographic movement or not and including the type of entity moving. Creating this corpus proved difficult without any comparable corpora to start with, high human labeling costs, and since movement can at times be interpreted differently. To overcome these challenges, we developed an iterative process employing hand labeling, crowd voting for confirmation, and machine learning to predict more labels. By merging advances in word embeddings with traditional machine learning models and model ensembling, prediction accuracy is at an acceptable level to produce a large silver-standard corpus despite the small gold-standard corpus training set. Our corpus will likely benefit computational processing of geography in text and spatial cognition, in addition to detection of movement.
AB - Analyzing the geographic movement of humans, animals, and other phenomena is a growing field of research. This research has benefited urban planning, logistics, animal migration understanding, and much more. Typically, the movement is captured as precise geographic coordinates and time stamps with Global Positioning Systems (GPS). Although some research uses computational techniques to take advantage of implicit movement in descriptions of route directions, hiking paths, and historical exploration routes, innovation would accelerate with a large and diverse corpus. We created a corpus of sentences labeled as describing geographic movement or not and including the type of entity moving. Creating this corpus proved difficult without any comparable corpora to start with, high human labeling costs, and since movement can at times be interpreted differently. To overcome these challenges, we developed an iterative process employing hand labeling, crowd voting for confirmation, and machine learning to predict more labels. By merging advances in word embeddings with traditional machine learning models and model ensembling, prediction accuracy is at an acceptable level to produce a large silver-standard corpus despite the small gold-standard corpus training set. Our corpus will likely benefit computational processing of geography in text and spatial cognition, in addition to detection of movement.
UR - http://www.scopus.com/inward/record.url?scp=85096588755&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096588755&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85096588755
T3 - LREC 2020 - 12th International Conference on Language Resources and Evaluation, Conference Proceedings
SP - 2054
EP - 2063
BT - LREC 2020 - 12th International Conference on Language Resources and Evaluation, Conference Proceedings
A2 - Calzolari, Nicoletta
A2 - Bechet, Frederic
A2 - Blache, Philippe
A2 - Choukri, Khalid
A2 - Cieri, Christopher
A2 - Declerck, Thierry
A2 - Goggi, Sara
A2 - Isahara, Hitoshi
A2 - Maegaard, Bente
A2 - Mariani, Joseph
A2 - Mazo, Helene
A2 - Moreno, Asuncion
A2 - Odijk, Jan
A2 - Piperidis, Stelios
PB - European Language Resources Association (ELRA)
T2 - 12th International Conference on Language Resources and Evaluation, LREC 2020
Y2 - 11 May 2020 through 16 May 2020
ER -