TY - JOUR
T1 - Reconstruction of stereoscopic CTA events using deep learning with CTLearn
AU - The CTA Consortium
AU - Miener, T.
AU - Nieto, D.
AU - Brill, A.
AU - Spencer, S.
AU - Contreras, J. L.
AU - Abdalla, H.
AU - Abe, H.
AU - Abe, S.
AU - Abusleme, A.
AU - Acero, F.
AU - Acharyya, A.
AU - Acín Portella, V.
AU - Ackley, K.
AU - Adam, R.
AU - Adams, C.
AU - Adhikari, S. S.
AU - Aguado-Ruesga, I.
AU - Agudo, I.
AU - Aguilera, R.
AU - Aguirre-Santaella, A.
AU - Aharonian, F.
AU - Alberdi, A.
AU - Alfaro, R.
AU - Alfaro, J.
AU - Alispach, C.
AU - Aloisio, R.
AU - Alves Batista, R.
AU - Amans, J. P.
AU - Amati, L.
AU - Amato, E.
AU - Ambrogi, L.
AU - Ambrosi, G.
AU - Ambrosio, M.
AU - Ammendola, R.
AU - Anderson, J.
AU - Anduze, M.
AU - Angüner, E. O.
AU - Antonelli, L. A.
AU - Antonuccio, V.
AU - Antoranz, P.
AU - Anutarawiramkul, R.
AU - Aragunde Gutierrez, J.
AU - Aramo, C.
AU - Araudo, A.
AU - Araya, M.
AU - Arbet-Engels, A.
AU - Arcaro, C.
AU - Arendt, V.
AU - Falcone, A.
AU - Murase, K.
N1 - Publisher Copyright:
© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)
PY - 2022/3/18
Y1 - 2022/3/18
N2 - The Cherenkov Telescope Array (CTA), conceived as an array of tens of imaging atmospheric Cherenkov telescopes (IACTs), is an international project for a next-generation ground-based gamma-ray observatory, aiming to improve on the sensitivity of current-generation instruments a factor of five to ten and provide energy coverage from 20 GeV to more than 300 TeV. Arrays of IACTs probe the very-high-energy gamma-ray sky. Their working principle consists of the simultaneous observation of air showers initiated by the interaction of very-high-energy gamma rays and cosmic rays with the atmosphere. Cherenkov photons induced by a given shower are focused onto the camera plane of the telescopes in the array, producing a multi-stereoscopic record of the event. This image contains the longitudinal development of the air shower, together with its spatial, temporal, and calorimetric information. The properties of the originating very-high-energy particle (type, energy, and incoming direction) can be inferred from those images by reconstructing the full event using machine learning techniques. In this contribution, we present a purely deep-learning driven, full-event reconstruction of simulated, stereoscopic IACT events using CTLearn. CTLearn is a package that includes modules for loading and manipulating IACT data and for running deep learning models, using pixel-wise camera data as input.
AB - The Cherenkov Telescope Array (CTA), conceived as an array of tens of imaging atmospheric Cherenkov telescopes (IACTs), is an international project for a next-generation ground-based gamma-ray observatory, aiming to improve on the sensitivity of current-generation instruments a factor of five to ten and provide energy coverage from 20 GeV to more than 300 TeV. Arrays of IACTs probe the very-high-energy gamma-ray sky. Their working principle consists of the simultaneous observation of air showers initiated by the interaction of very-high-energy gamma rays and cosmic rays with the atmosphere. Cherenkov photons induced by a given shower are focused onto the camera plane of the telescopes in the array, producing a multi-stereoscopic record of the event. This image contains the longitudinal development of the air shower, together with its spatial, temporal, and calorimetric information. The properties of the originating very-high-energy particle (type, energy, and incoming direction) can be inferred from those images by reconstructing the full event using machine learning techniques. In this contribution, we present a purely deep-learning driven, full-event reconstruction of simulated, stereoscopic IACT events using CTLearn. CTLearn is a package that includes modules for loading and manipulating IACT data and for running deep learning models, using pixel-wise camera data as input.
UR - http://www.scopus.com/inward/record.url?scp=85145019293&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85145019293&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85145019293
SN - 1824-8039
VL - 395
JO - Proceedings of Science
JF - Proceedings of Science
M1 - 730
T2 - 37th International Cosmic Ray Conference, ICRC 2021
Y2 - 12 July 2021 through 23 July 2021
ER -