TY - JOUR
T1 - Recourse-based stochastic nonlinear programming
T2 - Properties and Benders-SQP algorithms
AU - Kulkarni, Ankur A.
AU - Shanbhag, Uday V.
N1 - Funding Information:
This research has been supported by an NSF research grant 0728863 and an NCSA faculty fellowship, 2007.
PY - 2012/1
Y1 - 2012/1
N2 - In this paper, we study recourse-based stochastic nonlinear programs and make two sets of contributions. The first set assumes general probability spaces and provides a deeper understanding of feasibility and recourse in stochastic nonlinear programs. A sufficient condition, for equality between the sets of feasible first-stage decisions arising from two different interpretations of almost sure feasibility, is provided. This condition is an extension to nonlinear settings of the "W-condition," first suggested by Walkup and Wets (SIAM J. Appl. Math. 15:1299-1314, 1967). Notions of complete and relatively-complete recourse for nonlinear stochastic programs are defined and simple sufficient conditions for these to hold are given. Implications of these results on the L-shaped method are discussed. Our second set of contributions lies in the construction of a scalable, superlinearly convergent method for solving this class of problems, under the setting of a finite sample-space. We present a novel hybrid algorithm that combines sequential quadratic programming (SQP) and Benders decomposition. In this framework, the resulting quadratic programming approximations while arbitrarily large, are observed to be two-period stochastic quadratic programs (QPs) and are solved through two variants of Benders decomposition. The first is based on an inexact-cut L-shaped method for stochastic quadratic programming while the second is a quadratic extension to a trust-region method suggested by Linderoth and Wright (Comput. Optim. Appl. 24:207-250, 2003). Obtaining Lagrange multiplier estimates in this framework poses a unique challenge and are shown to be cheaply obtainable through the solution of a single low-dimensional QP. Globalization of the method is achieved through a parallelizable linesearch procedure. Finally, the efficiency and scalability of the algorithm are demonstrated on a set of stochastic nonlinear programming test problems.
AB - In this paper, we study recourse-based stochastic nonlinear programs and make two sets of contributions. The first set assumes general probability spaces and provides a deeper understanding of feasibility and recourse in stochastic nonlinear programs. A sufficient condition, for equality between the sets of feasible first-stage decisions arising from two different interpretations of almost sure feasibility, is provided. This condition is an extension to nonlinear settings of the "W-condition," first suggested by Walkup and Wets (SIAM J. Appl. Math. 15:1299-1314, 1967). Notions of complete and relatively-complete recourse for nonlinear stochastic programs are defined and simple sufficient conditions for these to hold are given. Implications of these results on the L-shaped method are discussed. Our second set of contributions lies in the construction of a scalable, superlinearly convergent method for solving this class of problems, under the setting of a finite sample-space. We present a novel hybrid algorithm that combines sequential quadratic programming (SQP) and Benders decomposition. In this framework, the resulting quadratic programming approximations while arbitrarily large, are observed to be two-period stochastic quadratic programs (QPs) and are solved through two variants of Benders decomposition. The first is based on an inexact-cut L-shaped method for stochastic quadratic programming while the second is a quadratic extension to a trust-region method suggested by Linderoth and Wright (Comput. Optim. Appl. 24:207-250, 2003). Obtaining Lagrange multiplier estimates in this framework poses a unique challenge and are shown to be cheaply obtainable through the solution of a single low-dimensional QP. Globalization of the method is achieved through a parallelizable linesearch procedure. Finally, the efficiency and scalability of the algorithm are demonstrated on a set of stochastic nonlinear programming test problems.
UR - http://www.scopus.com/inward/record.url?scp=84355164639&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84355164639&partnerID=8YFLogxK
U2 - 10.1007/s10589-010-9316-8
DO - 10.1007/s10589-010-9316-8
M3 - Article
AN - SCOPUS:84355164639
SN - 0926-6003
VL - 51
SP - 77
EP - 123
JO - Computational Optimization and Applications
JF - Computational Optimization and Applications
IS - 1
ER -