Recruitment of a foreign quinone into the A1 site of photosystem I. I. Genetic and physiological characterization of phylloquinone biosynthetic pathway mutants in Synechocystis sp. PCC 6803

T. Wade Johnson, Gaozhong Shen, Boris Zybailov, Derrick Kolling, Ricardo Reategui, Steve Beauparlant, Ilya R. Vassiliev, Donald A. Bryant, A. Daniel Jones, John H. Golbeck, Parag R. Chitnis

Research output: Contribution to journalArticlepeer-review

121 Scopus citations

Abstract

Genes encoding enzymes of the biosynthetic pathway leading to phylloquinone, the secondary electron acceptor of photosystem (PS) I, were identified in Synechocystis sp. PCC 6803 by comparison with genes encoding enzymes of the menaquinone biosynthetic pathway in Escherichia coli. Targeted inactivation of the menA and menB genes, which code for phytyl transferase and 1,4-dihydroxy-2-naphthoate synthase, respectively, prevented the synthesis of phylloquinone, thereby confirming the participation of these two gene products in the biosynthetic pathway. The menA and menB mutants grow photoautotrophically under low light conditions (20 μE m-2 s-1), with doubling times twice that of the wild type, but they are unable to grow under high light conditions (120 μE m-2 s-1). The menA and menB mutants grow photoheterotrophically on media supplemented with glucose under low light conditions, with doubling times similar to that of the wild type, but they are unable to grow under high light conditions unless atrazine is present to inhibit PS II activity. The level of active PS II per cell in the menA and menB mutant strains is identical to that of the wild type, but the level of active PSI is about 50-60% that of the wild type as assayed by low temperature fluorescence, P700 photoactivity, and electron transfer rates. PSI complexes isolated from the menA and menB mutant strains contain the full complement of polypeptides, show photoreduction of F(A) and F(B) at 15 K, and support 82-84% of the wild type rate of electron transfer from cytochrome c6 to flavodoxin. HPLC analyses show high levels of plastoquinone-9 in PSI complexes from the menA and menB mutants but not from the wild type. We propose that in the absence of phylloquinone, PSI recruits plastoquinone-9 into the A1 site, where it functions as an efficient cofactor in electron transfer from A0 to the iron-sulfur clusters.

Original languageEnglish (US)
Pages (from-to)8523-8530
Number of pages8
JournalJournal of Biological Chemistry
Volume275
Issue number12
DOIs
StatePublished - Mar 24 2000

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Recruitment of a foreign quinone into the A1 site of photosystem I. I. Genetic and physiological characterization of phylloquinone biosynthetic pathway mutants in Synechocystis sp. PCC 6803'. Together they form a unique fingerprint.

Cite this