Recrystallization suppression through dispersion-strengthening of tungsten

E. Lang, H. Schamis, N. Madden, C. Smith, R. Kolasinski, J. Krogstad, J. P. Allain

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


Tungsten is the material of choice for the divertor region of future nuclear fusion reactors, an environment that will expose plasma-facing components (e.g. divertor, etc…) to high temperatures and transient high heat flux events. Under these conditions, recrystallization and grain growth of tungsten can occur, leading to undesirable microstructural and mechanical property changes. Therefore, there is a need to raise the recrystallization temperature of tungsten and limit the kinetics of the recrystallization and grain growth processes. In this work, we examine the effect of different types (TiC vs. TaC vs. ZrC) and different concentrations (1.1 vs. 5 vs. 10 wt.%) of dispersed second phase particles in a tungsten matrix on the high temperature performance. The addition of second-phase particles effectively increases the temperature of and time for recrystallization and slow grain growth; however, the addition of a high weight fraction of particles alters the surface chemistry, which may impact subsequent plasma-surface interactions. These results show that the addition of small concentrations of dispersed particles can be effectively employed in tungsten to raise the upper operating temperature limit for tungsten in a fusion reactor.

Original languageEnglish (US)
Article number152613
JournalJournal of Nuclear Materials
StatePublished - Mar 2021

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • General Materials Science
  • Nuclear Energy and Engineering


Dive into the research topics of 'Recrystallization suppression through dispersion-strengthening of tungsten'. Together they form a unique fingerprint.

Cite this