Abstract
Alterations in dopamine neurotransmission are associated with obesity and food preferences. Otsuka Long-Evans Tokushima Fatty (OLETF) rats that lack functional cholecystokinin receptor type-1 (CCK-1R), due to a natural mutation, exhibit impaired satiation, are hyperphagic, and become obese. In addition, compared to lean control Long-Evans Tokushima (LETO) rats, OLETF rats have pronounced avidity for over-consuming palatable sweet solutions, have greater dopamine release to psychostimulants, reduced dopamine 2 receptor (D2R) binding, and exhibit increased sensitivity to sucrose reward. This supports altered dopamine function in this strain and its general preference for palatable solutions such as sucrose. In this study, we examined the relationship between OLETF’s hyperphagic behavior and striatal dopamine signaling by investigating basal and amphetamine stimulated motor activity in prediabetic OLETF rats before and after access to sucrose solution (0.3 M) compared to non-mutant control LETO rats, as well as availability of dopamine transporter (DAT) using autoradiography. In the sucrose tests, one group of OLETF rats received ad libitum access to sucrose while the other group received an amount of sucrose equal to that consumed by the LETO. OLETFs with ad libitum access consumed significantly more sucrose than LETOs. Sucrose exerted a biphasic effect on basal activity in both strains, i.e., reduced activity for 1 week followed by increased activity in weeks 2 and 3. Basal locomotor activity was reduced (−17%) in OLETFs prior to sucrose, compared to LETOs. Withdrawal of sucrose resulted in increased locomotor activity in both strains. The magnitude of this effect was greater in OLETFs and the activity was increased in restricted compared to ad-libitum-access OLETFs. Sucrose access augmented AMPH-responses in both strains with a greater sensitization to AMPH during week 1, an effect that was a function of the amount of sucrose consumed. One week of sucrose withdrawal sensitized AMPH-induced ambulatory activity in both strains. In OLETF with restricted access to sucrose, withdrawal resulted in no further sensitization to AMPH. DAT availability in the nucleus accumbens shell was significantly reduced in OLETF compared with aged-matched LETO. Together, these findings show that OLETF rats have reduced basal DA transmission and a heightened response to natural and pharmacological stimulation.
Original language | English (US) |
---|---|
Article number | 9773 |
Journal | International journal of molecular sciences |
Volume | 24 |
Issue number | 11 |
DOIs | |
State | Published - Jun 2023 |
All Science Journal Classification (ASJC) codes
- Catalysis
- Molecular Biology
- Spectroscopy
- Computer Science Applications
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry