TY - GEN
T1 - Reducing power with performance constraints for parallel sparse applications
AU - Chen, G.
AU - Malkowski, K.
AU - Kandemir, M.
AU - Raghavan, P.
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2005
Y1 - 2005
N2 - Sparse and irregular computations constitute a large fraction of applications in the data-intensive scientific domain. While every effort is made to balance the computational workload in such computations across parallel processors, achieving sustained near machine-peak performance with close-to-ideal load balanced computation-to-processor mapping is inherently difficult. As a result, most of the time, the loads assigned to parallel processors can exhibit significant variations. While there have been numerous past efforts that study this imbalance from the performance viewpoint, to our knowledge, no prior study has considered exploiting the imbalance for reducing power consumption during execution. Power consumption in large-scale clusters of workstations is becoming a critical issue as noted by several recent research papers from both industry and academia. Focusing on sparse matrix computations in which underlying parallel computations and data dependencies can be represented by trees, this paper proposes schemes that save power through voltage/frequency scaling. Our goal is to reduce overall energy consumption by scaling the voltages/frequencies of those processors that are not in the critical path; i.e., our approach is oriented towards saving power without incurring performance penalties.
AB - Sparse and irregular computations constitute a large fraction of applications in the data-intensive scientific domain. While every effort is made to balance the computational workload in such computations across parallel processors, achieving sustained near machine-peak performance with close-to-ideal load balanced computation-to-processor mapping is inherently difficult. As a result, most of the time, the loads assigned to parallel processors can exhibit significant variations. While there have been numerous past efforts that study this imbalance from the performance viewpoint, to our knowledge, no prior study has considered exploiting the imbalance for reducing power consumption during execution. Power consumption in large-scale clusters of workstations is becoming a critical issue as noted by several recent research papers from both industry and academia. Focusing on sparse matrix computations in which underlying parallel computations and data dependencies can be represented by trees, this paper proposes schemes that save power through voltage/frequency scaling. Our goal is to reduce overall energy consumption by scaling the voltages/frequencies of those processors that are not in the critical path; i.e., our approach is oriented towards saving power without incurring performance penalties.
UR - http://www.scopus.com/inward/record.url?scp=33746318690&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33746318690&partnerID=8YFLogxK
U2 - 10.1109/IPDPS.2005.378
DO - 10.1109/IPDPS.2005.378
M3 - Conference contribution
AN - SCOPUS:33746318690
SN - 0769523129
SN - 0769523129
SN - 9780769523125
T3 - Proceedings - 19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005
BT - Proceedings - 19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005
T2 - 19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005
Y2 - 4 April 2005 through 8 April 2005
ER -